Browse > Article

Compensation for Nonlinear Distortion in OFDM Systems Using a Digital Predistorter Based on the Canonical PWL Model  

Seo, Man-Jung (숭실대학교 정보통신공학과 전송보상 연구실)
Shim, Hee-Sung (숭실대학교 정보통신공학과 전송보상 연구실)
Im, Sung-Bin (숭실대학교 정보통신공학과 전송보상 연구실)
Jung, Jae-Ho (한국전자통신연구원)
Lee, Kwang-Chun (한국전자통신연구원)
Abstract
Orthogonal frequency division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, multicarrier systems such as OFDM show great sensitivity to nonlinear distortion. The OFDM structure requires a summation of a large number of subcarriers for multicarrier modulation, and as a result of this summation large signal envelope fluctuations occur. These fluctuations make OFDM systems to be very sensitive to nonlinear distortion introduced by the high power amplifier (HPA) at the transmitter. In this paper, we propose a canonical piecewise-linear (CPWL) model based digital predistorter to compensate for nonlinear distortion introduced by the high peak-to-average power ratio (PAPR) and the HPA in OFDM systems. The performance of the new predistortion scheme for OFDM systems is evaluated in terms of total degradation (TD) and bit error rate (BER). The simulation results demonstrated that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinear distortion introduced by the HPA.
Keywords
OFDM; HPA; predistorter; CPWL; total degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Ghaderi, "Adaptive predistortion lineariser using polynomial functions," IEEE Proc. Commun., Vol.141, No. 2, pp.49-55, Apr. 1994.
2 L. J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Trans. Commun., Vol.33, No. 7, pp.665-675, Jul. 1985.   DOI
3 S. C. Cripps, RF Power Amplifiers for Wireless Communications, Northwood, MA: Artech House, 1999.
4 L. O. Chua and R. Ying, "Canonical Piecewise- Linear Analysis," IEEE Trans. Circ. Syst., Vol.CAS-30, No. 3, pp.125-140, Mar. 1983.
5 A. N. D'Andrea, V. Lottici, and R. Reggiannini, "Efficient digital predistortion in radio realy links with nonlinear power amplifiers," IEE Proc. Commun., Vol.147, No. 3, pp.175-179, Jun. 2000.   DOI   ScienceOn
6 C. Rapp, "Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal," Proc. ECSC-2, Liege, Belgium, pp.179-184. Oct. 1991.
7 R. Batruni, "A Multilayer Neural Network with Piecewise-Linear Structure and Back- Propagation Learning," IEEE Trans. Neural Netw., Vol.2, No. 3, pp.395-403, May 1991.   DOI   ScienceOn
8 K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, "Look-up table techniques for adaptive digital predistortion: a development and comparison," IEEE Trans. Veh. Technol., Vol.49, No. 5, pp.1995-2002, Sep. 2000.   DOI   ScienceOn
9 M. Y. Cheong, S. Werner, T. I. Laakso, J. Cousseau, and J. L. Figueroa, "PREDISTOTER DESIGN EMPLOYING PARALLEL PIECEWISE LINEAR STRUCTURE AND INVERSE COORDINATE MAPPING FOR BROADBAND COMMUNICATIONS," EUSIPCO 2006, Sep. 2006.
10 M. Lazaro, I. Santamaria, C. Pantaleon, A. M. Sanchez, A. T. Puente, and T. Fernandez, "Smoothing the Canonical Piecewise-Linear Model: An Efficient and Derivable Large- Signal Model for MESFET/HEMT Transistors," IEEE Trans. Circ. Syst. I, Vol.48, No. 2, pp.184-192, Feb. 2001.   DOI
11 M. Y. Cheong, E. Aschbacher, P. Brumayr, M. Rupp, and T. Laakso, "Comparison and Experimental Verification of Two Lowcomplexity Digital Predistortion Methods," Asilomar 2005, Oct. 2005.
12 C. Kahlert and L. O. Chua, "A Generalized Canonical Piecewise-Linear Representation," IEEE Trans. Circ. Syst., Vol.37, No. 3, pp.373-383, Mar. 1990.   DOI   ScienceOn
13 H. A. Al-Asady and M. Ibnkahla, "Performance evaluation and total degradation of 16-QAM modulations over satellite channels," IEEE CCECE 2004, Vol.2, pp.1187-1190, May 2004.
14 Ramjee Prasad, OFDM for Wireless Communications Systems, Artech House, 2004.
15 L. O. Chua and A. C. Deng, "Canonical Piecewise-Linear Modeling," IEEE Trans. Circ. Syst., Vol.CAS-33, No. 5, pp.511-525, May 1986.
16 J. E. Cousseau, J. L. Figueroa, S. Werner, and T. I. Laakso, "Efficient Nonlinear Wiener Model Identification Using a Complex-Valued Simplicial Canonical Piecewise Linear Filter," IEEE Trans. Signal Process., Vol.55, No. 5, pp.1780-1792, May 2007.   DOI
17 L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-user Communications, WLANs and Broadcasting, John Wiley & Sons, 2003.
18 D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers." IEEE Trans. Signal Process, Vol.54, No. 10, pp.3852-3860, Oct. 2006.
19 I. Santamaria, J. Ibanez, M. Lazaro, C. Pantaleon, and L. Vielva, "Modeling Nonlinear Power Amplifiers in OFDM Systems from Subsampled Data: A Comparative Study Using Real Measurements," EURASIP J. Appl. Signal Process. 2003:12, pp.1219-1228, Dec. 2003.
20 S. C. Thompson, J. G. Proakis, and J. R. Zeidler, "The Effectiveness of Signal Clipping for PAPR and Total Degradation Reduction in OFDM Systems," IEEE Globecom 2005, Vol.5, pp.2807-2811, Nov. 2005.
21 A. S. Wright and W. G. Durtler, "Experimental performance of an adaptive digital linearized power amplifier," IEEE Trans. Veh. Technol., Vol.41, No. 4, pp.395-400, Nov. 1992.   DOI   ScienceOn