• Title/Summary/Keyword: auxiliary resonant circuit

Search Result 135, Processing Time 0.028 seconds

Performance Evaluations of Quasi Resonant DC Link Assisted Three Phase Soft Switching Inverter for AC Servo Motor Drive

  • Yoshitsugu J.;Ando M.;Rukonuzzaman M.;Hiraki E.;Nakaoka M.;Inoue K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.232-235
    • /
    • 2001
  • This paper presents a circuit of the quasi-resonant DC link to achieve soft-switching three phase inverter using intelligent IGBT power module. The soft-switching operation in this circuit is confirmed simulation and experimental results. Its conductive noise is measured for electrical AC motor drive as compared with that of the conventional hard switching inverter.

  • PDF

An Improved ZVS Partial Series Resonant DC/DC Converter with No Effective Duty Losses (유효 듀티 손실이 없는 향상된 영전압 부분 직렬 공진형 DC/DC 컨버터)

  • 이동윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.376-379
    • /
    • 2000
  • This paper presents an improved ZVS partial series resonant DC/DC converter (PSRC) with low conduction losses suitable for high power and high frequency applications. The proposed PSRC have advantages of zero-voltage-swiching (ZVS) of main switches for entire load ranges and low conduction losses of main switches by decreasing current stresses Also the reduction of the effective duty cycle is not occurred during the resonant period of the main circuit because the auxiliary circuit of the proposed converter is placed out of the main power path. An improved ZVS PSRC has a so much characteristics with respect to the reduction of current stress. The operation principles of the proposed converter are explained in detail and the various simulated and experimental results show the validity of the proposed converter.

  • PDF

ZVT boost converter with minimizing conduction losses of the main switch (주 스위치의 전도손실을 최소화한 ZVT 부스터 컨버터)

  • Chin Gi-Ho;Kang Ahn-Jong;Kim Tae-Woo;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • A ZVT PWM Boost Converter is proposed to reduce current stresses and conduction losses of main switch in a conventional circuit. By attaching resonant inductor Lr1 in parallel with capacitor Cr, the resonant circulating current is diverted to the additional component and then the main switch is subjected to minimum current stresses same as those in their PWM counterparts. Moreover, the operation of the auxiliary switch in a half wave mode to prevent reverse resonant energy from freewheeling can be able to lessen the conduction losses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed circuit.

  • PDF

Power Factor Correction Improvement and Total Harmonic Distortion Reducing for Panel's Air-conditioner (패널용 에어컨의 역률 개선 및 고조파 저감)

  • Park, S.W.;Park, J.W.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.258-261
    • /
    • 2001
  • High Power factor Active Filter converter is used for Inverter Air conditioner power supply to meet IEC standard. In the active filter topology for power factor, extra switch just control the input current indirectly to meet the IEC standard for reducing the cost and size. In this paper, low cost converter was suggested by simulation using extra switch which auxiliary pulse is inserted and quasi resonant soft switching topology control is adapted for panel's inverter air conditioner converter Inserting auxiliary Pulse method to the extra switch has the benefit of reducing THD by low cost input control circuit. And also quasi resonant soft switching topology can reduce switching loss. So both technical is suitable for Panel's Air conditioner.

  • PDF

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

Implementation of a ZVT-PRT Current Controlled Inverters using a Digital Signal Processor (DSP를 이용한 ZVT-PRT 전류제어형 인버터의 구현)

  • 이성룡;전칠환;김상수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.425-429
    • /
    • 2002
  • In this paper, a single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the hi-directional inverter is operated.

  • PDF

Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber (패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석)

  • Kim, Jung-Do;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

A Study on the ZVT Boost Converter with reduced Auxiliary switch losses (ZVT Boost 컨버터의 보조스위치 손실 저감에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1428-1431
    • /
    • 2005
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, the proposed converter reduces turn-off switching loss of the auxiliary switch. Therefore, the proposed converter has a high efficiency by active snubber. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

New Circuit Topology of Single-Ended Soft-Switching PWM High Frequency Inverter and Its Performance Evaluations

  • Deguchi Y.;Moisseev S.;Nakaoka M.;Hirota I.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.247-250
    • /
    • 2001
  • This paper presents a simple and cost effective circuit topology of single-ended type high frequency quasi-resonant PWM inverter using IGBTs, which can operate under wide soft switching operation range based on ZCS for main power switch as compared with a conventional active voltage-clamped ZVS-PWM high frequency quasi-resonant inverter developed previously. In principle, this new circuit topology can efficiently operate under a constant frequency PWM control-based power regulation scheme. In particular, it is noted that the zero current soft switching (ZCS) commutation can achieve for the main active power switch. On the other hand, the zero voltage soft switching (ZVS) commutation can also achieve for the auxiliary active power switch. The operating principle of this high-frequency Inverter treated here and its power regulation characteristics are illustrated on the basis of the simulation and feasible experimental results.

  • PDF