• Title/Summary/Keyword: auxiliary electrode

Search Result 78, Processing Time 0.026 seconds

Evaluation of Errors Due to Earth Mutual Resistance in Measuring Ground Impedance of Vertically-driven Ground Electrode (수직 접지전극의 접지임피던스 측정에서 도전유도에 의한 오차 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1778-1783
    • /
    • 2009
  • Ground impedance for the large grounding system is measured according to the IEEE Standard 81.2 which is based on the revised fall-of-potential method of installing auxiliary electrode at a right angle. When the auxiliary electrodes are located at an angle of $90^{\circ}$, the ground impedance inevitably includes the error due to earth mutual resistance. In this paper, in order to accurately measure the ground impedance of vertically-driven ground electrodes, error rates due to earth mutual resistance are evaluated by ground resistance and ground impedance measuring devices and compared with calculated values. As a result, the measured results are in good agreement with the computed results considering soil layer with different resistivity. The error rates due to earth mutual resistance decrease with increasing the length of ground electrode in the case that the ratio of the distance between the ground rod to be measured and the auxiliary electrodes to the length of ground electrode(D/L) is same. The ground impedance should be measured at the minimum distance between the auxiliary electrodes that will have an estimated measurement accuracy due to earth mutual resistance.

Analysis Technique of Risk Voltage around Grounding Electrode by New Touch and Step Voltage Measurement Methods (새로운 접촉 및 보폭전압 측정법에 의한 접지전극 주위의 위험전압 분석기법)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.81-86
    • /
    • 2012
  • This paper describes the analysis technique of risk voltage around grounding electrode by new touch and step voltage measurement methods. We have analyzed three techniques for risk voltage measurement, such as footprint-electrode method, test-probe method, and simulated-personnel method. We have selected test-probe method considering applicability of site. In order to reduce error related to the location of the auxiliary electrode, we propose a new approach to perform risk voltage measurement with minimum errors and short auxiliary electrode distances. Field tests were carried out at a grounding grid. It can be concluded that the proposed method will be satisfactory for risk voltage measurement.

The 3- dimensional analysis for the discharge of PDP according to the pulse width of voltage applied to the address electrode during sustain period (Sustain 구간중 Address 전극에 인가되는 전압 펄스 폭에 따른 3차원 방전형상 분석)

  • Kwon, Hyoung-Seok;Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1830-1833
    • /
    • 2002
  • We measured 3-dimensional temporal behavior of the light emitted from AC plasma display panel(PDP) at various auxiliary voltage pulse width supplied to the address electrode in sustain period using scanned point detecting system. In the case of applying an auxiliary address voltage pulse, the light emission starts at the inner edges of the cathode so the larger discharge volume toward address electrode can be obtained compared with the normal sustain discharge. Especially, when the auxiliary voltage pulse width is the $2{\mu}s$, the maximum luminance and long emission time can be obtained.

  • PDF

Recent Progress on Voltage Drop Compensation in Top Emission Organic Light Emitting Diodes (OLED)

  • Jeong, Byoung-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The voltage drop due to the thin cathode film at the large size top emission OLED panel was successfully compensated with making electrical contact between thin cathode and anode auxiliary electrode by 355nm wavelength of laser. It was found that the luminance uniformity dramatically increased from around 15% to more than 80% through this electrical compensation between thin cathode and anode auxiliary electrode. Moreover, the removing process for EL materials on the anode auxiliary electrode process by laser was very reliable and stable. Therefore, it is thought that the EL removal method using laser to make electrical contacts is very appropriate to mass production for such a large size top emission OLEDs to obtain high uniformity of luminance.

Evaluation of Measurement Accuracy of Ground Impedances in Counterpoise according to Location of Auxiliary Electrodes (보조전극의 위치에 따른 매설지선의 접지임피던스 측정정확도의 평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Choi, Jong-Hyuk;Kim, Dong-Kyu;Lee, Gyu-Sun;Yang, Soon-Man;Kim, Tae-Gi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.352-355
    • /
    • 2009
  • The ground resistance has been used as a method of estimating the capability of counterpoise. When transient currents blow through a ground electrode, it is reasonable to evaluate the performance of ground electrode system as a ground impedance instead of ground resistance. However, the measurement method of ground impedance for counterpoise is not clearly presented. This paper describes the measurement method of ground impedance considering the earth mutual resistances and AC mutual coupling. When we measure the ground impedance, the error due to earth mutual resistances depends on the distance between the auxiliary electrodes and the electrode under test. The measurement accuracy of high frequency ground impedance is mainly influenced by the location of the current electrode and the potential electrode.

  • PDF

The Three-Dimensional Temporal Behavior Measurement of Light Emitted From Plasma Display Panel

  • Choi, Hoon-Young;Kwon, Hyung-Seok;Lee, Seok-Hyun;Lee, Seung-Gol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.598-600
    • /
    • 2002
  • To improve the luminance and efficiency of AC PDP, the effects of a square pulse applied to the address electrode during a sustain-period is investigated. Through this experiment, we confirmed the improvement of luminance and efficiency. We performed the temporal behavior measurement for the light emitted from AC PDP at floating state of the address electrode and at various auxiliary voltages (including ground state) applied to the address electrode using the scanned point detecting system. In the case of using an auxiliary voltage pulse, emission starts at the inner edges of the anode and cathode simultaneously. Also, we obtained the larger two discharge volumes compared with the normal sustain discharge where address electrode is floated.

  • PDF

A Study on Uniformity of Current Distribution in Hull Cell (Hull Cell에서 전류분포의 균일화에 관한 연구)

  • 여운관
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF

Effects of Ac Mutual Coupling According to Location of Auxiliary Electrodes In Measuring the Ground Impedance of Vertically or Horizontally Buried Ground Electrode (수직 또는 수평으로 매설된 접지전극의 접지임피던스 측정시 보조전극 위치에 따른 전자유도의 영향)

  • Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.86-92
    • /
    • 2009
  • In order to minimize ac mutual coupling, the auxiliary electrode are located at a right angle in measuring ground impedance. In case that the measurement space is limited, the alternative method is employed. At that time, it is necessary to investigate the measurement errors due to ac mutual coupling and earth mutual resistance in measuring the ground impedances. 'This paper presents the measurement accuracy according to the location of the current and potential auxiliary electrodes in measuring ground impedance of vertically or horizontally buried ground electrode. The measurement errors due to ac mutual coupling were evaluated Consequently, the effect of ac mutual coupling on the measurement accuracy for horizontally buried ground electrode is greater than that for vertically buried ground electrode. Measurement errors due to ac mutual coupling is the largest when the current and potential auxiliary electrodes are located in parallel. The 61.8[%] rule is inappropriate in measuring ground measurement. Theoretically, in case that the angle between the current and potential auxiliary electrodes is 90$[^{\circ}]$, there is no ac mutual coupling. If it is not possible to route the current and potential auxiliary electrodes at a right angle with limitation of measurement space, the location of these electrodes with an obtuse angle is preferred to that with an acute angle in reducing the measurement errors due to ac mutual coupling.

IBS electrode structure for enhanced performance in ac PDP

  • Yang, Seung-Hee;Moon, Jae-Seung;Kim, Kwang-Nyun;Moon, Cheol-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.589-592
    • /
    • 2007
  • In this paper, we propose IBS(ITO-BUS Separated) electrode structure. BUS electrode lines are placed apart from the ITO electrode lines, and they are electrically connected with vertical auxiliary electrodes. We varied the lengths of the vertical electrodes as 70, 120, 320um. The highest luminous efficiency and the largest IR emission peak were obtained for 70um length.

  • PDF

Auxiliary Address Pulse Driving Scheme for Improving Luminance and Luminous Efficiency in 42-inch WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The effects of an auxiliary address pulse driving scheme, in which an auxiliary short pulse is applied to the address electrode during a sustain-period, were examined under the various image patterns of the 42-inch WVGA ac-PDP. When the auxiliary address pulse driving scheme was applied, the luminance of the red, green and blue cells were measured respectively. And the luminance, luminous efficiency, and current were measured under the full-white pattern of the 42-inch ac-PDP. As a result, the luminance of blue cells was improved approximately by 17 %, whereas the luminous efficiency of the full-white pattern was improved approximately by 34 % without a misfiring discharge in comparison with conventional driving scheme.