• 제목/요약/키워드: autophagy

검색결과 481건 처리시간 0.033초

Mitophagy: a balance regulator of NLRP3 inflammasome activation

  • Kim, Min-Ji;Yoon, Joo-Heon;Ryu, Ji-Hwan
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.529-535
    • /
    • 2016
  • The NLRP3 inflammasome is activated by a variety of external or host-derived stimuli and its activation initiates an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1β maturation and secretion. The NLRP3 inflammasome activation is a kind of innate immune response, most likely mediated by myeloid cells acting as a host defense mechanism. However, if this activation is not properly regulated, excessive inflammation induced by overactivated NLRP3 inflammasome can be detrimental to the host, causing tissue damage and organ dysfunction, eventually causing several diseases. Previous studies have suggested that mitochondrial damage may be a cause of NLRP3 inflammasome activation and autophagy, which is a conserved self-degradation process that negatively regulates NLRP3 inflammasome activation. Recently, mitochondria-selective autophagy, termed mitophagy, has emerged as a central player for maintaining mitochondrial homeostasis through the elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 inflammasome activation. In this review, we will first focus on the molecular mechanisms of NLRP3 inflammasome activation and NLRP3 inflammasome-related diseases. We will then discuss autophagy, especially mitophagy, as a negative regulator of NLPP3 inflammasome activation by examining recent advances in research.

Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction

  • Chun, Sung Kook;Go, Kristina;Yang, Ming-Jim;Zendejas, Ivan;Behrns, Kevin E.;Kim, Jae-Sung
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.35-46
    • /
    • 2016
  • No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.

Extract of high hydrostatic pressure-treated danshen (Salvia miltiorrhiza) ameliorates atherosclerosis via autophagy induction

  • Ko, Minjeong;Oh, Goo Taeg;Park, Jiyong;Kwon, Ho Jeong
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.652-657
    • /
    • 2020
  • Danshen (Salvia miltiorrhiza) is a traditional medicinal plant widely used in Asian countries for its pharmacological activities (e.g., amelioration of cardiovascular diseases). In this study, we investigated the anti-atherosclerotic activity of raw danshen root extract prepared using high hydrostatic pressure (HHP) at 550 MPa for 5 min and hot water extraction. This method was useful for elimination of bacteria from cultured danshen plants and for better extraction yield of active principles. The HHP-treated danshen extract (HDE) inhibited proliferation of human umbilical vein endothelial cells (HUVECs) and induced autophagy that was assessed by LC3 conversion and p62 degradation. HDE suppressed foam cell formation in oxLDL-induced RAW264.7 macrophages; lysosomal activity simultaneously increased, measured by acridine orange staining. HDE also reduced atherosclerotic plaque development in vivo in apolipoprotein E knock-out (ApoE-/-) mice fed a high cholesterol diet. Taken together, these results indicated that HDE exhibited anti-atherosclerotic activity via autophagy induction.

Determination of HIF-1α degradation pathways via modulation of the propionyl mark

  • Kwanyoung Jeong;Jinmi Choi;Ahrum Choi;Joohee Shim;Young Ah Kim;Changseok Oh;Hong-Duk Youn;Eun-Jung Cho
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.252-257
    • /
    • 2023
  • The hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxic stress under physiological and pathological conditions. HIF-1α protein stability is tightly regulated by the ubiquitin-proteasome system (UPS) and autophagy in normoxia, hypoxia, and the tumor environment to mediate the hypoxic response. However, the mechanisms of how the UPS and autophagy interplay for HIF-1α proteostasis remain unclear. Here, we found a HIF-1α species propionylated at lysine (K) 709 by p300/CREB binding protein (CBP). HIF-1α stability and the choice of degradation pathway were affected by HIF-1α propionylation. K709-propionylation prevented HIF-1α from degradation through the UPS, while activated chaperon-mediated autophagy (CMA) induced the degradation of propionylated and nonpropionylated HIF-1α. CMA contributed to HIF-1α degradation in both normoxia and hypoxia. Furthermore, the pan-cancer analysis showed that CMA had a significant positive correlation with the hypoxic signatures, whereas SIRT1, responsible for K709-depropionylation correlated negatively with them. Altogether, our results revealed a novel mechanism of HIF-1α distribution into two different degradation pathways.

Hibiscus syriacus Leaves Upregulate p62/SQSTM1 through TLR4/p38, JNK, and NF-κB/Nrf2 Signaling Pathway in RAW264.7 Cells

  • Seung Woo Im;Gwang Hun Park;Min Yeong Choi;Hae-Yun Kwon;Jin Boo Jeong
    • 한국자원식물학회지
    • /
    • 제36권3호
    • /
    • pp.191-197
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, HSL increased p62/SQSTM1 expression. Inhibition of TLR4, p38, JNK, and NF-κB blocked HSL-mediated increase of p62/SQSTM1. HSL activated p38, JNK, and NF-κB signaling, but HSL-mediated activation of p38, JNK, and NF-κB signaling was reversed by TLR4 inhibition. In addition, HSL increased Nrf2 expression, but HSL-mediated Nrf2 expression did not occur in the inhibition of TLR4, p38, JNK, and NF-κB. Taken together, it is believed that HSL-mediated autophagy may be dependent on activating Nrf2 expression via TLR4-dependent activation of p38, JNK, and NF-κB in macrophages.

Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis

  • Seungyeon Yang;Subin Moon;Soojung Claire Hur;Seung Min Jeong
    • BMB Reports
    • /
    • 제56권12호
    • /
    • pp.651-656
    • /
    • 2023
  • Senescence, a cellular process through which damaged or dysfunctional cells suppress the cell cycle, contributes to aging or age-related functional decline. Cell metabolism has been closely correlated with aging processes, and it has been widely recognized that metabolic changes underlie the cellular alterations that occur with aging. Here, we report that fatty acid oxidation (FAO) serves as a critical regulator of cellular senescence and uncover the underlying mechanism by which FAO inhibition induces senescence. Pharmacological or genetic ablation of FAO results in a p53-dependent induction of cellular senescence in human fibroblasts, whereas enhancing FAO suppresses replicative senescence. We found that FAO inhibition promotes cellular senescence through acetyl-CoA, independent of energy depletion. Mechanistically, increased formation of autophagosomes following FAO inhibition leads to a reduction in SIRT1 protein levels, thereby contributing to senescence induction. Finally, we found that inhibition of autophagy or enforced expression of SIRT1 can rescue the induction of senescence as a result of FAO inhibition. Collectively, our study reveals a distinctive role for the FAO-autophagy-SIRT1 axis in the regulation of cellular senescence.

AMPK와 자식작용의 미토콘드리아 생합성 조절 기전 (Control Mechanism of AMPK and Autophagy for Mitochondrial Biogenesis)

  • 전병환
    • 한국콘텐츠학회논문지
    • /
    • 제9권4호
    • /
    • pp.355-363
    • /
    • 2009
  • 비정상적인 미토콘드리아에 의해 산화 스트레스가 증가하면 세포내 신호전달 및 유전자 발현에 손상을 일으켜 인슐린 저항성이나 당뇨병 등의 여러 질환들을 유발한다. 그런데 자식작용은 산화 스트레스로 기능이 저하된 미토콘드리아를 제거하여 인슐린 저항성 등을 억제해준다. 한편 운동도 미토콘드리아 생합성을 강화시켜 조직의 기능저하나 퇴행을 회복시켜준다. 따라서 운동과 자식작용이 서로 연관되어 미토콘드리아 생합성을 유도하는 신호체계로 작용할 가능성이 있고, 이 연구를 통해 운동 혹은 AICAR (aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside)처치로 활성 화된 AMPK(5'-AMP- activated protein kinase) 신호전달체계가 미토콘드리아 생합성을 증가시키는 경로에 자식작용이 관여하는지의 여부를 확인하고자 하였다. 연구결과에 따르면, 6시간의 급성운동으로 쥐의 골격근에서 PGC-1(peroxisome proliferator-activated receptor gamma coactivator 1)과 mtTFA (mitochondrial transcription factor A)의 mRNA 발현이 유의하게 증가하였다. 하지만 자식작용 표지제인 LC3(microtubule-associated proteinl light chain 3)의 mRNA 발현은 증가경향을 나타냈지만 유의하지 않았다. 한편 C2C12 근세포에서도 AICAR 처치에 의해 PGC-1, mtTFA mRNA 발현이 모두 증가하였지만, 이러한 증가는 LC3 SiRNA에 의해서 억제되지 않는 것으로 나타났다. 이러한 결과들을 통해 자식작용은 AMPK에 의해 조절되는 신호전달 전달체계와는 다른 경로로 미토콘드리아 생합성에 영향을 미칠 것으로 사료된다.

ATG5 knockout promotes paclitaxel sensitivity in drug-resistant cells via induction of necrotic cell death

  • Hwang, Sung-Hee;Yeom, Hojin;Lee, Michael
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.233-240
    • /
    • 2020
  • Autophagy regulators are often effective as potential cancer therapeutic agents. Here, we investigated paclitaxel sensitivity in cells with knockout (KO) of ATG5 gene. The ATG5 KO in multidrug resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr) was generated using the CRISPR/Cas9 technology. The qPCR and LC3 immunoblot confirmed knockout of the gene and protein of ATG5, respectively. The ATG5 KO restored the sensitivity of Ras-NIH 3T3/Mdr cells to paclitaxel. Interestingly, ATG5 overexpression restored autophagy function in ATG5 KO cells, but failed to rescue paclitaxel resistance. These results raise the possibility that low level of resistance to paclitaxel in ATG5 KO cells may be related to other roles of ATG5 independent of its function in autophagy. The ATG5 KO significantly induced a G2/M arrest in cell cycle progression. Additionally, ATG5 KO caused necrosis of a high proportion of cells after paclitaxel treatment. These data suggest that the difference in sensitivity to paclitaxel between ATG5 KO and their parental MDR cells may result from the disparity in the proportions of necrotic cells in both populations. Thus, our results demonstrate that the ATG5 KO in paclitaxel resistant cells leads to a marked G2/M arrest and sensitizes cells to paclitaxel-induced necrosis.

Parthenolide-Induced Apoptosis, Autophagy and Suppression of Proliferation in HepG2 Cells

  • Sun, Jing;Zhang, Chan;Bao, Yong-Li;Wu, Yin;Chen, Zhong-Liang;Yu, Chun-Lei;Huang, Yan-Xin;Sun, Ying;Zheng, Li-Hua;Wang, Xue;Li, Yu-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4897-4902
    • /
    • 2014
  • Purpose: To investigate the anticancer effects and underlying mechanisms of parthenolide on HepG2 human hepatocellular carcinoma cells. Materials and Methods: Cell viability was assessed by MTT assay and cell apoptosis through DAPI, TUNEL staining and Western blotting. Monodansylcadaverin(MDC) and AO staining were used to detect cell autophagy. Cell proliferation was assessed by Ki67 immunofluorescence staining. Results: Parthenolide induced growth inhibition in HepG2 cells. DAPI and TUNEL staining showed that parthenolide could increase the number of apoptotic nuclei, while reducing the expression of the anti-apoptotic protein Bcl-2 and elevating the expression of related proteins, like p53, Bax, cleaved caspase9 and cleaved caspase3. Parthenolide could induce autophagy in HepG2 cells and inhibited the expression of proliferation-related gene, Ki-67. Conclusions: Parthenolide can exert anti-cancer effects by inducing cell apoptosis, activating autophagy and inhibiting cell proliferation.

Effect of Autophagy-Related Beclin1 on Sensitivity of Cisplatin-Resistant Ovarian Cancer Cells to Chemotherapeutic Agents

  • Sun, Yang;Liu, Jia-Hua;Jin, Long;Sui, Yu-Xia;Han, Li-Li;Huang, Yin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2785-2791
    • /
    • 2015
  • The purpose of the study was to determine the effects of autophagy related gene Beclin1 at different levels of expression on the sensitivity of cisplatin-resistant ovarian cancer cells (SKOV3/DDP) to different chemotherapeutics. In pSUPER-Beclin1 transfected cells, real-time fluorescence quantitative RT-PCR and Western blot analysis showed that expression was significantly inhibited. Flow cytometry revealed that the mean fluorescence intensity (MDC), reflecting autophagy, and cells in the G0/G1 phase were markedly reduced. When compared with the blank control group, inhibition of Beclin1 expression in SKOV3/DDP cells not only increased the rate of apoptosis following treatment with chemotherapeutics, but also increased the sensitivity. These findings suggest that Beclin1 expression plays an important role in chemotherapeutic agent-induced death of SKOV3/DDP cells. Inhibition of autophagy related gene Beclin1 expression in SKOV3/DDP cells may increase the rate of apoptosis and elevate the sensitivity to chemotherapeutics.