Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.10.115

Mitophagy: a balance regulator of NLRP3 inflammasome activation  

Kim, Min-Ji (Research Center for Natural Human Defense System)
Yoon, Joo-Heon (Research Center for Natural Human Defense System)
Ryu, Ji-Hwan (Brain Korea 21 PLUS Project for Medical Science)
Publication Information
BMB Reports / v.49, no.10, 2016 , pp. 529-535 More about this Journal
Abstract
The NLRP3 inflammasome is activated by a variety of external or host-derived stimuli and its activation initiates an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1β maturation and secretion. The NLRP3 inflammasome activation is a kind of innate immune response, most likely mediated by myeloid cells acting as a host defense mechanism. However, if this activation is not properly regulated, excessive inflammation induced by overactivated NLRP3 inflammasome can be detrimental to the host, causing tissue damage and organ dysfunction, eventually causing several diseases. Previous studies have suggested that mitochondrial damage may be a cause of NLRP3 inflammasome activation and autophagy, which is a conserved self-degradation process that negatively regulates NLRP3 inflammasome activation. Recently, mitochondria-selective autophagy, termed mitophagy, has emerged as a central player for maintaining mitochondrial homeostasis through the elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 inflammasome activation. In this review, we will first focus on the molecular mechanisms of NLRP3 inflammasome activation and NLRP3 inflammasome-related diseases. We will then discuss autophagy, especially mitophagy, as a negative regulator of NLPP3 inflammasome activation by examining recent advances in research.
Keywords
Autophagy; Inflammation; Mitophagy; NLRP3 inflammasome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rosen H and Klebanoff SJ (1979) Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med 149, 27-39   DOI
2 Voloboueva LA and Giffard RG (2011) Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res 89, 1989-1996   DOI
3 Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444, 860-867   DOI
4 Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ and Jo EK (2013) Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62, 194-204   DOI
5 Wen H, Gris D, Lei Y et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12, 408-415   DOI
6 Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17, 179-188   DOI
7 Yin Z, Deng T, Peterson LE et al (2014) Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Mol Cell Endocrinol 394, 80-87   DOI
8 Stienstra R, Joosten LA, Koenen T et al (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12, 593-605   DOI
9 Nakahira K, Kyung SY, Rogers AJ et al (2013) Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 10, e1001577; discussion e1001577   DOI
10 Gurung P, Lukens JR and Kanneganti TD (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 21, 193-201   DOI
11 Lazarou M (2015) Keeping the immune system in check: a role for mitophagy. Immunol Cell Biol 93, 3-10   DOI
12 Chen X, Lee KA, Ren X et al (2016) Synthesis of a highly HOCl-selective fluorescent probe and its use for imaging HOCl in cells and organisms. Nat Protoc 11, 1219-1228   DOI
13 Nakahira K, Haspel JA, Rathinam VA et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12, 222-230   DOI
14 Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM and Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282, 2871-2879   DOI
15 Yin J, Kwon Y, Kim D et al (2015) Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice. Nat Protoc 10, 1742-1754   DOI
16 Joo JH, Ryu JH, Kim CH et al (2012) Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa. Antioxid Redox Signal 16, 57-70   DOI
17 Kim MJ, Ryu JC, Kwon Y et al (2014) Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice. Antioxid Redox Signal 21, 1803-1818   DOI
18 Pelletier M, Lepow TS, Billingham LK, Murphy MP and Siegel RM (2012) New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin Immunol 24, 384-392   DOI
19 Shimada K, Crother TR, Karlin J et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401-414   DOI
20 Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449, 819-826   DOI
21 Akira S, Uematsu S and Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124, 783-801   DOI
22 Takeuchi O and Akira S (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820   DOI
23 Li N, Ragheb K, Lawler G et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278, 8516-8525   DOI
24 Petrilli V, Papin S, Dostert C, Mayor A, Martinon F and Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14, 1583-1589   DOI
25 Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT and Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677   DOI
26 Huang LS, Cobessi D, Tung EY and Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351, 573-597   DOI
27 Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN (2013) The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348-361   DOI
28 Komatsu M and Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15, 923-933   DOI
29 Johansen T and Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296   DOI
30 Saito T and Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116, 1477-1490   DOI
31 Guo H, Callaway JB and Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21, 677-687   DOI
32 Abounit K, Scarabelli TM and McCauley RB (2012) Autophagy in mammalian cells. World J Biol Chem 3, 1-6   DOI
33 Deretic V, Saitoh T and Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13, 722-737   DOI
34 Strowig T, Henao-Mejia J, Elinav E and Flavell R (2012) Inflammasomes in health and disease. Nature 481, 278-286   DOI
35 Lamkanfi M and Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28, 137-161   DOI
36 Wen H, Miao EA and Ting JP (2013) Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39, 432-441   DOI
37 Lamkanfi M and Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157, 1013-1022   DOI
38 Vanaja SK, Rathinam VA and Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25, 308-315   DOI
39 Schroder K and Tschopp J (2010) The inflammasomes. Cell 140, 821-832   DOI
40 Latz E, Xiao TS and Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13, 397-411   DOI
41 Kufer TA, Banks DJ and Philpott DJ (2006) Innate immune sensing of microbes by Nod proteins. Ann N Y Acad Sci 1072, 19-27   DOI
42 Moreira LO and Zamboni DS (2012) NOD1 and NOD2 Signaling in Infection and Inflammation. Front Immunol 3, 328   DOI
43 Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V and Reith W (2000) CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 14, 1156-1166
44 Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal, R and Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37, 3030-3039   DOI
45 Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218   DOI
46 Boyle KB and Randow F (2013) The role of 'eat-me' signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16, 339-348   DOI
47 Harris J, Hartman M, Roche C et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286, 9587-9597   DOI
48 Zhou R, Yazdi AS, Menu P and Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225   DOI
49 Shi CS, Shenderov K, Huang NN et al (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13, 255-263   DOI
50 Thurston TL, Wandel MP, von Muhlinen N, Foeglein A and Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418   DOI
51 Huett A, Heath RJ, Begun J et al (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12, 778-790   DOI
52 Manzanillo PS, Ayres JS, Watson RO et al (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516   DOI
53 Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298   DOI
54 Hernandez-Cuellar E, Tsuchiya K, Hara H et al (2012) Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol 189, 5113-5117   DOI
55 Suzuki T, Franchi L, Toma C et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3, e111   DOI
56 Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518   DOI
57 Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107, 378-383   DOI
58 Roberts TL, Idris A, Dunn JA et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057-1060   DOI
59 Lu A, Magupalli VG, Ruan J et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206   DOI
60 Franchi L, Munoz-Planillo R and Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13, 325-332   DOI
61 Lee GS, Subramanian N, Kim AI et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123-127   DOI
62 Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9, 857-865   DOI
63 Heneka MT, Golenbock DT and Latz E (2015) Innate immunity in Alzheimer's disease. Nat Immunol 16, 229-236   DOI
64 Codolo G, Plotegher N, Pozzobon T et al (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One 8, e55375   DOI
65 Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11, 45-51   DOI
66 Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP and Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191, 933-942   DOI
67 Schwarten M, Mohrluder J, Ma P et al (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690-698   DOI
68 Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S and Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094-19104   DOI
69 Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14, 177-185   DOI
70 Zhong Z, Umemura A, Sanchez-Lopez E et al (2016) NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 164, 896-910   DOI
71 Kim MJ, Bae SH, Ryu JC et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12, 1272-1291   DOI