본 연구는 2027년 적용 가능한 레벨5의 자율주행차량을 기반으로 자율주행 DRT UX 디자인 특성을 제안하는데 목적이 있다. 연구범위로는 고령자와 차량 내외의 인터랙션을 중심으로 한 시스템으로 하였으며, 레벨5의 자율주행차량을 연구대상으로 하였다. 적용 대상으로는 2021년을 기준으로 60대부터 90대로 설정하였다. 본 연구는 고령자와의 직접적인 소통을 통한 실제적인 인사이트를 도출한 자율주행 DRT UX 디자인 특성 연구라는데 기존 연구와의 차별성이 있다. 연구 방법으로는 문헌연구를 통해 자율주행차량과 DRT를 이론적으로 고찰하였으며, 이를 바탕으로 자율주행차량과 DRT의 사례를 분석하였다. 사례연구로는 고령자 인터뷰, 자율주행차량 시승, 영상제작, 설문조사, 고령자 자율주행차량 VR 시승을 통한 일반화로 진행하였다. 포커스 그룹 인터뷰(FGI)를 통해 자율주행 DRT UX 디자인 특성 10가지를 도출하였으며, 도출된 특성은 예약, 승차, 입력, 주행, 응급, 하차 등으로 구분되었다. 본 연구를 통해 고령자의 이동성 향상에 이바지하고 자율주행 DRT의 실용화를 한층 앞당기는 계기가 되기를 바란다.
CraneIII, Carl D.;Armstrong Jr., David G.;Torrie, Mel W.;Gray, Sarah A.
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.1126-1130
/
2004
This paper describes the design, development, and performance testing of an autonomous ground vehicle that was developed to participate in the DARPA Grand Challenge that was held in March 2004. The authors of this paper are members of Team CIMAR which was one of twenty five teams selected by DARPA to participate in a competition to develop an autonomous vehicle that can navigate from near Los Angeles to near Las Vegas at speeds averaging twenty miles per hour. Most of the event was held on open terrain and trails in a rocky desert environment. This paper describes the overall system design and the performance of the system at the event.
Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.
A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .
This paper describes the tracking algorithm performance evaluation for autonomous vehicle using a safety envelope based path. As the level of autonomous vehicle technologies evolves along with the development of relevant supporting modules including sensors, more advanced methodologies for path generation and tracking are needed. A safety envelope zone, designated as the obstacle free regions between the roadway edges, would be introduced and refined for further application with more detailed specifications. In this paper, the performance of the path tracking algorithm based on the generated path would be evaluated under safety envelop environment. In this process, static obstacle map for safety envelope was created using Lidar based vehicle information such as current vehicle location, speed and yaw rate that were collected under various driving setups at Seoul National University roadways. A level of safety was evaluated through CarSim simulation based on paths generated with two different references: a safety envelope based path and a GPS data based one. A better performance was observed for tracking with the safety envelop based path than that with the GPS based one.
Research on the safety of autonomous vehicle is being conducted in various countries, including the European Union, and computer simulation techniques so called 'Virtual Tool Chain' are mainly used. As part of the crash safety study of autonomous vehicle, 25 car to car collision scenarios were provided as a result of a real accident-based accident reproduction analysis study conducted by a domestic research institution, and a vehicle crash analysis was performed using the FE car to car model of the Honda Accord. In order to analyze the results of the car to car simulation and to construct a database, major crash parameters were selected as impact speed, angle, location, and overlap, and a method of defining them in an indexed form was presented. In order to compare the crash severity of each scenario, a value obtained by integrating the resultant acceleration measured by the ACU of the vehicle was applied. The equivalent collision test mode was derived by comparing the crash severity of the regulation test mode, 30 deg rigid barrier mode, in the same way.
본 논문에서는 자율주행 장치의 효율적인 자율주행을 위한 특징 맵 기반 SLAM(simultaneous localization and mapping)과 수정된 유전자 알고리즘을 이용한 경로계획을 제안하였다. 현재 연구되고 있는 자율주행 장치들에 있어서 가장 큰 문제점 중 하나는 환경 적응성이다. 이는 새로운 환경에서 자신의 위치를 인식해야 하는 경우와 "kid napping" 문제와 연계되어 자율주행 장치가 새로운 위치 혹은 알려지지 않은 위치에서 자신의 위치를 인식해야하는 경우로 구분된다. 본 논문에서는 이러한 환경 적응성 문제를 해결하기 위해 초음파 센서를 이용한 특징맵 기반 SLAM을 적용하였으며, 지능형 자율주행 장치의 효율적인 주행을 위해 수정된 유전자 알고리즘(genetic algorithm: GA)을 적용한다. 본 논문에서는 성능을 분석하기 위해 직접 설계 제작한 자율주행 장치를 대상으로 임의의 위치에서 자율주행 장치 스스로 자신의 위치를 인식한 후, 주어진 작업을 수행하기 위해 유전자 알고리즘을 통하여 최적화 된 경로를 따라 주행하는 가를 실험하였다. 실험 결과, 빠르고 최적화된 경로계획과 효율적인 SLAM이 가능함을 확인 할 수 있었다.
Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.4123-4141
/
2019
Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.
This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.
자율주행자동차를 상용화하기 위해서는 모든 측면에서 안전성 테스트를 수행해야 한다. 자율주행자동차 기술의 구현을 고려할 때, 시내상황과 같은 복잡한 환경에서 발생할 수 있는 시나리오를 분석 할 필요가 있다. 자율 주행 차량이 기존의 교통 환경에서 정상적인 작동이 가능한지 여부의 평가도 중요하다. 또한 자율주행 자동차가 일반 차량과의 상호 작용을 검토하고, 도로에서 발생할 수 있는 사고에 대처할 필요가 있다. 본 연구는 도로환경에서 자율주행자동차의 평가 요소들을 기존의 ADAS와 같은 평가 프로토콜을 참고하여 자율주행 차량의 평가 방안을 모색하였다. 연구 결과는 다양한 기술 구현수준과 함께 다른 시험환경에 대한 자율 차량평가 방법을 수립하는데 반영하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.