• 제목/요약/키워드: autonomous robot localization

검색결과 131건 처리시간 0.027초

추가적 확장 칼만 필터를 이용한 불규칙적인 바닥에서 자율 이동 로봇의 효율적인 SLAM (An Effective SLAM for Autonomous Mobile Robot Navigation in Irregular Surface using Redundant Extended Kalman Filter)

  • 박재용;최정원;이석규;박주현
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.218-224
    • /
    • 2009
  • This paper proposes an effective SLAM based on redundant extended Kalman filter for robot navigation in an irregular surface to enhance the accuracy of robot's pose. To establish an accurate model of a caterpillar type robot is very difficult due to the mechanical complexity of the system which results in highly nonlinear behavior. In addition, for robot navigation on an irregular surface, its control suffers from the uncertain pose of the robot heading closely related to the condition of the floor. We show how this problem can be overcome by the proposed approach based on redundant extended Kalman filter through some computer simulation results.

자동차형 로봇의 도시 실외에서의 효율적인 위치 추정 및 네비게이션 시스템의 구현 (An Efficient Urban Outdoor Localization and Navigation System for Car-like Mobile Robots)

  • 윤건우;김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.745-754
    • /
    • 2013
  • An efficient urban outdoor localization and navigation system is proposed for car-like robots. First an accurate outdoor localization method is suggested using line/arc features and 2.5D map matching with LRFs (Laser Range Finders), which can reduce the number of singular cases and increase accuracy. Also, path generation, path tracking, and path modification algorithms are proposed for navigation. All these algorithms are implemented on an electric scooter to construct an autonomous urban outdoor localization and navigation system. Experiments reveal the practicality of the proposed system.

세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현 (Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition)

  • 최정현;임예은;박종훈;정현수;변승재;사공의훈;박정현;김창현;이재찬;김도형;황면중
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑 (Vision-based Mobile Robot Localization and Mapping using fisheye Lens)

  • 이종실;민홍기;홍승홍
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.256-262
    • /
    • 2004
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.

  • PDF

실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발 (Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots)

  • 김건희;김문상;정우진
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

위치추정을 위한 인공표식 설계 및 인식 (Artificial Landmark Design and Recognition for Localization)

  • 김시용;이수용;송재복
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.99-105
    • /
    • 2008
  • To achieve autonomous mobile robot navigation, accurate localization technique is the fundamental issue that should be addressed. In augmented reality, the position of a user is required for location-based services. This paper presents indoor localization using infrared reflective artificial landmarks. In order to minimize the disturbance to the user and to provide the ease of installation, the passive landmarks are used. The landmarks are made of coated film which reflects the infrared light efficiently. Infrared light is not visible, but the camera can capture the reflected infrared light. Once the artificial landmark is identified, the camera's relative position/orientation is estimated with respect to the landmark. In order to reduce the number of the required artificial landmarks for a given environment, the pan/tilt mechanism is developed together with the distortion correction algorithm.

  • PDF

로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가 (Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver)

  • 황인호;김강희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권10호
    • /
    • pp.588-593
    • /
    • 2017
  • 본 논문에서는 자율주행차량에서 사용되는 고가의 다채널 라이다(LiDAR) 센서를 다수의 저가 소채널 라이다들로 대체하여 사용하는 경우에 다수의 라이다들을 하나의 라이다로 가상화하는 드라이버를 제안한다. 이를 통해 로봇 분야에서 하나의 물리 라이다를 가정하여 개발된 SLAM(Simultaneous Localization And Mapping) 알고리즘들은 수정 없이 사용될 수 있다. 본 논문은 제안하는 드라이버를 로봇운영체제 ROS(Robot Operating System) 상에서 구현하고 SLAM 알고리즘과 함께 평가하였다. 평가 결과, 제안한 드라이버는 3차원 점지도의 점밀도를 제어하는 필터와 함께 기존 알고리즘의 수정 없이 사용될 수 있음을 확인하였다.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

자이로 센서를 이용한 이동로봇 Odometry 오차 보정에 관한 연구 (Odometry Error Correction with a Gyro Sensor for the Mobile Robot Localization)

  • 박시나;홍현주;최원태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권2호
    • /
    • pp.65-67
    • /
    • 2006
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

장애인을 위한 스마트 모빌리티 시스템 개발 (Development of Smart Mobility System for Persons with Disabilities)

  • 유영준;박세은;안태준;양지호;이명규;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.