• 제목/요약/키워드: autonomous robot

검색결과 912건 처리시간 0.028초

레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration (Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor)

  • 정정우;강희준
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

미지의 영역에서 활동하는 자율이동로봇의 초음파지도에 근거한 위치인식 시스템 개발 (Development of a sonar map based position estimation system for an autonomous mobile robot operating in an unknown environment)

  • 강승균;임종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1589-1592
    • /
    • 1997
  • Among the prerequisite abilities (perception of environment, path planning and position estimation) of an autonomous mobile robot, position estimation has been seldom studied by mobile robot researchers. In most cases, conventional positioin estimation has been performed by placing landmarks or giving the entrire environmental information in advance. Unlikely to the conventional ones, the study addresses a new method that the robot itself can select distinctive features in the environment and save them as landmarks without any a priori knowledge, which can maximize the autonomous behavior of the robot. First, an orjentaion probaility model is applied to construct a lcoal map of robot's surrounding. The feature of the object in the map is then extracted and the map is saved as landmark. Also, presented is the position estimation method that utilizes the correspondence between landmarks and current local map. In dong this, the uncertainty of the robot's current positioin is estimated in order to select the corresponding landmark stored in the previous steps. The usefulness of all these approaches are illustrated with the results porduced by a real robot equipped with ultrasonic sensors.

  • PDF

일반화된 보로노이 다이어그램을 이용한 논홀로노믹 모바일 로봇의 자율 주행 (Autonomous Navigation of Nonholonomic Mobile Robots Using Generalized Voronoi Diagrams)

  • 소명뢰;신동익;신규식
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.98-102
    • /
    • 2015
  • This paper proposes an autonomous navigation method for a nonholonomic mobile robot, based on the generalized Voronoi diagram (GVD). We define the look-ahead point for a given motion constraint to determine the direction of motion, which solves the problem of a minimum turning radius for the real nonholonomic mobile robot. This method can be used to direct the robot to explore an unknown environment and construct smooth feedback curves for the nonholonomic robot. As the trajectories can be smoothed, the position of the robot can be stabilized in the plane. The simulation results are presented to verify the performance of the proposed methods for the nonholonomic mobile robot. Furthermore, this approach is worth drawing on the experience of any other mobile robots.

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

Development of an Autonomous Mobile Robot with Functions of Speech Recognition and Collision Avoidance

  • Park, Min-Gyu;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.475-475
    • /
    • 2000
  • This paper describes the construction of an autonomous mobile robot with functions of collision avoidance and speech recognition that is used for teaching path of the robot. The human voice as a teaching method provides more convenient user-interface to mobile robot. For safe navigation, the autonomous mobile robot needs abilities to recognize surrounding environment and avoid collision. We use u1trasonic sensors to obtain the distance from the mobile robot to the various obstacles. By navigation algorithm, the robot forecasts the possibility of collision with obstacles and modifies a path if it detects dangerous obstacles. For these functions, the robot system is composed of four separated control modules, which are a speech recognition module, a servo motor control module, an ultrasonic sensor module, and a main control module. These modules are integrated by CAN(controller area network) in order to provide real-time communication.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

자율섭취기능을 갖는 바퀴구동형 생체모방로봇 개발 (Development of a Biomimetic Wheeled Robot with Autonomous Eating Functionality)

  • 조익진;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.573-579
    • /
    • 2006
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, biomimetic robot and humanoid robot. Interest in these robots is increased because the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable or home or personal environment. The more biomimetic robots resemble living creature, the more human feels familiarity. Human feels close friendship not only when feeding a pet, but also when watching a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on an internal battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new biomimetic entertainment robot with autonomous eating functionality, called EPRO-1(Eating Pet RObot version 1). The EPRO-1 is able to eat a food (a small battery), by itself and evacuate. We describe the design concept of the autonomous eating mechanism of the EPRO-1, characteristics of sub-parts of the manufactured mechanism and its control system.

MR센서를 이용한 실외형 자율이동 로봇의 퍼지 조향제어기 개발 (Development of Fuzzy Streering Controller for Outdoor Autonomous Mobile Robot with MR sensor)

  • 김정희;손석준;임영철;김태곤;유영재;김의선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2365-2368
    • /
    • 2001
  • This paper describes a fuzzy steering controller for an autonomous mobile robot with MR sensor. Using the magnetic field($B_{x}$, $B_{y}$, $B_{z}$) obtained from the MR sensor, we designed fuzzy controller for driving on the road center. Fuzzy rule base was built to magnetic field($B_{x}$, $B_{y}$, $B_{z}$). To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, dynamic model of mobile robot and coordinate transformation. A computer simulation of the robot (including mobile robot dynamics and steering) was used to verify the steering performance of the mobile robot controller using the fuzzy logic. Good results were obtained by computer simulation. So, we confirmed the robustness of the proposed fuzzy controller by computer simulation. Also, we know that proposed control algorithm was applied to real autonomous mobile robot.

  • PDF

엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템 (Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator)

  • 이민호;나건우;한승오
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.