
S P E C I A L I S S U E

EMOS: Enhanced moving object detection and classification
via sensor fusion and noise filtering

Dongjin Lee1,2 | Seung-Jun Han1 | Kyoung-Wook Min1 | Jungdan Choi1 |

Cheong Hee Park2

1Autonomous Driving Intelligence
Research Section, Mobility Robot
Research Division, Superintelligence
Creative Research Laboratory, Electronics
and Telecommunications Research
Institute, Daejeon, Republic of Korea
2Department of Computer Science and
Engineering, Chungnam National
University, Daejeon, Republic of Korea

Correspondence
Cheong Hee Park, Department of
Computer Science and Engineering,
Chungnam National University, Daejeon,
Republic of Korea.
Email: cheonghee@cnu.ac.kr

Funding information
Institute for Information and
Communications Technology Promotion,
Grant/Award Number: 2021-0-00891;
Ministry of Science, ICT and Future
Planning, Grant/Award Number:
2020-0-00002

Abstract

Dynamic object detection is essential for ensuring safe and reliable autono-

mous driving. Recently, light detection and ranging (LiDAR)-based object

detection has been introduced and shown excellent performance on various

benchmarks. Although LiDAR sensors have excellent accuracy in estimating

distance, they lack texture or color information and have a lower resolution

than conventional cameras. In addition, performance degradation occurs

when a LiDAR-based object detection model is applied to different driving

environments or when sensors from different LiDAR manufacturers are

utilized owing to the domain gap phenomenon. To address these issues, a

sensor-fusion-based object detection and classification method is proposed.

The proposed method operates in real time, making it suitable for integration

into autonomous vehicles. It performs well on our custom dataset and on pub-

licly available datasets, demonstrating its effectiveness in real-world road envi-

ronments. In addition, we will make available a novel three-dimensional

moving object detection dataset called ETRI 3D MOD.

KEYWORD S
autonomous driving, deep learning, image classification, object detection, sensor fusion

1 | INTRODUCTION

Autonomous vehicles (AVs) can operate without the
intervention of human drivers, likely reducing acci-
dents and increasing driver convenience. With the
development of advanced sensor technology, machine
learning algorithms, and computing power, AVs have
become a reality with the potential to revolutionize
the transportation industry [1–3]. AV technology can
be broadly divided into three stages: perception, plan-
ning, and control. In the perception stage, sensors such
as light detection and ranging (LiDAR) sensors,

cameras, and radars are used to perceive the driving
environment.

LiDAR sensors achieve higher accuracy when esti-
mating distance than radars and can be used at night
without being affected by lighting conditions, unlike
cameras. Since the introduction of LiDAR-based three-
dimensional (3D) object detection [4] combined with
deep learning, diverse studies have been conducted, and
state-of-the-art performance has been achieved on vari-
ous benchmarks [5–8]. However, the false-positive rate is
relatively high in driving environments that are different
from those in which the model was trained using a

Received: 21 March 2023 Revised: 13 July 2023 Accepted: 9 August 2023

DOI: 10.4218/etrij.2023-0109

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2021 ETRI

ETRI Journal. 2023;45(5):847–861. wileyonlinelibrary.com/journal/etrij 847

https://orcid.org/0000-0003-4527-6214
https://orcid.org/0000-0002-9594-6047
mailto:cheonghee@cnu.ac.kr
https://doi.org/10.4218/etrij.2023-0109
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2
http://crossmark.crossref.org/dialog/?doi=10.4218%2Fetrij.2023-0109&domain=pdf&date_stamp=2023-09-25

LiDAR-based object detection model [9, 10]. This is
because a LiDAR sensor has a lower spatial resolution
than cameras and lacks texture and color information.
Therefore, object classification using LiDAR is based
solely on geometric information, leading to a higher
false-positive rate.

LiDAR–camera fusion can be employed to overcome
the limitations of using LiDAR-only approaches. How-
ever, existing studies on LiDAR–camera fusion require
the synchronized collection of LiDAR and camera data in
a specific environment before applying a model trained
in a different environment [11–13]. Additionally, retrain-
ing the model for application to a new environment
involves laborious 3D object labeling, which is time-
consuming and expensive. To address these limitations,
we introduce a LiDAR–camera fusion method, as
depicted in Figure 1. The proposed method consists of
three steps: LiDAR-based 3D object detection, camera-
based image classification, and prediction refinement. In
the first step, we predict the classification information of
objects in 3D space and their sizes, positions, headings,
and confidence scores using a LiDAR-based 3D object
detection model. In the second step, the objects detected
in the previous stage are projected onto the correspond-
ing images, and the corresponding regions are cropped.
The cropped images are processed by an image classifica-
tion model. Finally, object classification is refined by fus-
ing the predictions from the two preceding steps, and
spurious objects are removed.

In the proposed method, publicly available image
data can be used to train the camera-based image classifi-
cation model without requiring the collection of

synchronized LiDAR data for retraining. To improve the
image classification performance in a new environment,
public data collected in similar environments or newly
collected camera data can be used to then perform two-
dimensional (2D) bounding box (BB) labeling. More data-
sets are available for 2D object detection than for 3D
object detection, and labeling 2D BBs is generally less
time-consuming and costly than labeling 3D objects.
Alternatively, we generate noisy data from images and
use them for training an image classification model to
reduce the false-positive rate.

Although some 3D object detection datasets that
include domestic road environments are publicly avail-
able at AIHub [14], certain data within these datasets
exhibit sensor quality and annotation issues. To address
this problem, we propose a new 3D object detection data-
set called ETRI 3D moving object detection (MOD) to
facilitate research on autonomous driving in
South Korea. Moreover, we constructed an ETRI 2D
moving object classification (MOC) dataset to evaluate
the proposed method.

The main contributions of this study are summarized
as follows:

• We introduce a simple yet effective method to refine
the object classification results by fusing camera data
with LiDAR sensor data to overcome the limitations of
LiDAR sensors and mitigate false positives.

• To showcase the applicability of the proposed method,
we constructed the ETRI 2D MOC dataset, which con-
sists of real-world road environments, and evaluated
its effectiveness. Furthermore, we demonstrated the

F I GURE 1 Overall architecture of proposed 3D object detection and image classification method.

848 LEE ET AL.

generalization ability of our method, which achieved
excellent results on the KITTI dataset. This dataset was
not used for training. Hence, our method has a suitable
performance on previously unseen data, further
confirming its effectiveness and generalization ability.

• We constructed a new 3D object detection dataset,
ETRI 3D MOD, through collection in urban and
campus environments located in Daejeon City,
Republic of Korea. We will publicly release this
dataset.

2 | RELATED WORK

2.1 | LiDAR-based 3D object detection

Object detection in 3D space involves classifying an
object and estimating its oriented 3D BBs, which include
position, size, and orientation. Deep-learning-based 3D
object detection for point-cloud data from LiDAR sensors
has emerged as a state-of-the-art method, showing supe-
rior results on public datasets [5–8]. VoxelNet [4] was
one of the first models to learn feature representations
from point-cloud data and estimate 3D BBs in an end-
to-end manner. It uses point-cloud voxelization and
PointNet [15] to encode the features of each voxel. The
input for the convolutional middle layers is a sparse four-
dimensional tensor, and 3D convolution and voxel-wise
feature aggregation are applied for feature extraction and
dimensionality reduction. Finally, a region proposal net-
work accurately predicts the 3D BBs. The inference time
is 225 ms, with the convolutional middle layers being the
bottleneck that require 170 ms for processing. SECOND
[16] refined VoxelNet [4] to reduce the training and
inference times while enhancing the performance when
predicting the orientation. A new data augmentation
technique was also used to further improve convergence
speed and detection performance. It requires 50 ms, mak-
ing it suitable for real-time applications. To improve the
runtime performance, PointPillars [17] introduced pillar-
based voxelization, which transforms the convolution
kernel of the middle layers from three to two dimensions.
The runtimes of this method are 24 ms in PyTorch [18]
and 16 ms in NVIDIA TensorRT [19]. In [20], a multi-
view fusion technique called dynamic voxelization was
proposed to extract features from two viewpoints,
namely, bird’s eye view (BEV) and perspective view. It
concatenates features from three different sources and
reveals the advantages of dynamic voxelization over hard
voxelization in terms of four metrics. CenterPoint [21] is
an anchor-free approach that learns a keypoint detector
to detect an object center and estimates other attributes

of the object, such as 3D shape, orientation, and velocity.
In the second stage, the prediction results are refined
using map-view features. Moreover, in [21], two different
backbones (VoxelNet [4] and PointPillars [17]) were com-
pared regarding detection performance and runtime.

2.2 | Camera-based image classification

Convolutional neural network (CNN)-based image classi-
fication technology has been widely studied and used in
numerous practical applications since the introduction of
AlexNet [22]. A visual geometry group network [23]
stacks small (3�3) convolution kernels instead of 5�5
or 7�7 kernels, allowing a deeper network while reduc-
ing the number of parameters to be learned. GoogLe-
Net [24] utilizes deep and complex CNNs that consist of
22 layers with nine inception modules and uses several
convolution filters to obtain multiscale features. Two
additional auxiliary classifiers weighted by 0.3 are uti-
lized to solve the vanishing gradient problem that usually
occurs in deep networks. ResNet [25] is a residual learn-
ing method for training CNNs and is considerably deeper
than previous methods [23, 24]. The key building block
of the network is called the residual block, which con-
tains more than two convolutional layers including short-
cut connections. It achieves remarkable results for a wide
range of computer vision tasks, such as image classifica-
tion, object detection, and segmentation, on several
benchmark datasets [26–28]. Their design principles have
influenced many subsequent studies [29–31]. Efficient-
Net [32] utilizes a model-scaling method that employs a
compound coefficient to balance the components of the
model, such as the depth, width, and resolution, for a
given resource budget. The effectiveness of this approach
is evaluated using well-known CNN architectures [25,
33]. A neural architecture search is used to construct a
novel baseline network, which is then expanded to pro-
duce a range of models known as EfficientNets.

Transformer-based image classification is a new area
in computer vision, and several studies have explored this
approach. A vision transformer [34] substitutes certain
convolutional layers of CNNs with self-attention layers,
thereby allowing the model to merge information from
different patches. The model is pretrained on large data-
sets such as ImageNet, ImageNet-21k, and JFT-300M to
learn a general representation of visual features, and it is
fine-tuned for several downstream tasks. A swin trans-
former [35] uses a hierarchical framework with shifted
windows for extracting visual features at multiple scales.
Its design allows capturing local features and understand-
ing the global context.

LEE ET AL. 849

2.3 | Multisensor-fusion-based 3D object
detection

Multisensor-fusion-based 3D object detection that inte-
grates sensors such as LiDAR sensors, cameras, and
radars can be broadly classified into early, intermediate,
and late fusion methods [11, 12, 30]. Early fusion com-
bines data from different sensors at the raw data level;
intermediate fusion performs merging at the feature
level; and late fusion combines the results at the output
level. However, a dataset that includes 3D BB annota-
tions is required to train the 3D object detection model
using these methods, which can be time-consuming and
expensive. To address this issue, a novel approach is pro-
posed in this study to enhance the performance of 3D
object detection using publicly available image classifica-
tion datasets that are relatively inexpensive to annotate
and contain numerous samples.

3 | METHOD

We propose a method for fusing point clouds acquired
from LiDAR sensors with images acquired from cameras
to predict 3D BBs and refine the classification informa-
tion of the predicted class to mitigate false positives, as
shown in Figure 1 [36]. The three steps of (1) LiDAR-
based 3D object detection, (2) camera-based image classi-
fication, and (3) prediction refinement are detailed.

3.1 | LiDAR-based 3D object detection

To estimate 3D objects from point-cloud data, we
employed CenterPoint-Pillars (CPP) [21], which has
excellent object detection performance and operates in
real time, making it suitable for applications in AVs. This
method is divided into three stages: pillar feature encod-
ing, backbone, and detection head.

3.1.1 | Pillar feature encoding

Point-cloud data obtained from LiDAR sensors include
the position (x, y, z) and intensity of reflectance (inten-
sity) of each point in 3D space. We did not use intensity
data in this study, unlike previous studies [4, 16, 17, 20,
21], because the meaning and range of intensity values
can differ between LiDAR manufacturers, even if they
have the same values. In this study, we used three differ-
ent datasets, which also influenced our decision not to
use intensity data. To unify the coordinate systems of the

datasets, we expressed point-cloud data and annotation
information in a vehicle coordinate system. Then, we
divided the 3D point-cloud data into 2D pillar shapes by
partitioning the data along the x and y directions. Let P =

{ðxi, yi, ziÞ}Ni¼1 represent the point-cloud data contained
within a pillar. xc, yc, zc denote the mean values of the
data points within a pillar and can be calculated using
the following formulas:

xc ¼
PN

i¼1xi
N

, yc ¼
PN

i¼1yi
N

, zc ¼
PN

i¼1zi
N

, ð1Þ

where xp, yp represent the center coordinates of a pillar.
Each point cloud was augmented as follows: Paug =

{ðxi, yi, zi, xi� xc, yi� yc, zi� zc, xi�xp, yi�ypÞ}Ni¼1. The
augmented feature Paug was used as an input to PointNet,
which ultimately generated a 64-dimensional feature vec-
tor for each nonempty pillar. The generated features were
transformed into a sparse pseudo-image format for use as
inputs to a 2D CNN.

3.1.2 | Backbone

We utilized a backbone similar to CPP [21] consisting of
top–down and upsampling networks. The top-down net-
work extracts features from the output of pillar feature
encoding, whereas the upsampling network generates a
dense output tensor by increasing the spatial resolution
of the feature maps produced by the top-down network.
Further improvements in speed were necessary to inte-
grate this approach into AVs. Therefore, we adopted the
method implemented in SECOND [16] and adjusted the
stride values of the upsampling network blocks from [1,
2, 4] to [0.5, 1, 2]. After this adjustment, the output fea-
ture map had half the width and height of the input,
whereas the number of channels increased from
64 to 384.

3.1.3 | Detection head

In the detection head, we predicted class-specific
heatmaps, height, 3D size, and rotation, and refined the
sub-pillar location. Once class-specific heatmaps were
generated, they were passed through a sigmoid function to
calculate the probability values for each class, which were
expressed as follows: clsLiDAR ¼ σ hm_clsiLiDAR

� �N

i¼1

�
.

The confidence score (CS) was calculated as follows:

CSLiDAR ¼ maxðclsLiDARÞ: ð2Þ

850 LEE ET AL.

3.2 | Camera-based image classification

Camera calibration parameters were used to project the
3D BBs predicted by the LiDAR-based object detector
described in Section 3.1 onto an image. Let Bi

LiDAR ¼
½x, y, z, l, w, h, r� denote the 3D BB detected by a LiDAR-
based object detector for object i. The projection of this
BB onto an image can be expressed using the following
camera projection equation:

uv1½ � ¼P½x y z 1�, ð3Þ

where uv1½ � is the projected 2D coordinates of the object
in the image and P is the 3�4 camera projection matrix.
Only the BBs that are projected within the field of view
of the camera are utilized in the subsequent steps.

3.2.1 | Backbone

We used a backbone similar to that of ResNet50 [25].
Compared with the original ResNet50, our modified ver-
sion, called ResNet50-Tiny, was adjusted as follows:

• The kernel size of layer conv1 was changed from 7 to
3, and its stride was changed from 2 to 1.

• The max pooling operation in layer conv2 was
removed.

These modifications enabled the network to operate
on smaller input images while reducing the computa-
tional cost. Table 1 lists the architectures of ResNet50

and ResNet50-Tiny. The output of the model during
inference was a vector of the computed probabilities for
each class, obtained by applying the softmax function to
the output vector of the model as follows:

clscamera ¼ softmaxðzÞ, ð4Þ

where z is the output vector of the model and clscamera is
a vector of probabilities per class.

3.3 | Prediction refinement

We propose a method to improve object classification
performance and remove false positives by fusing the
results of the LiDAR-based 3D object detection model
(Section 3.1) and the camera-based image classification
method (Section 3.2) for detected objects. The equations
for combining the results of the two methods are as
follows:

clsrefined ¼ max λ1CSLiDARþ λ2clscamerað Þ,
λ1þλ2 ¼ 1,

ð5Þ

where CSLiDAR and clscamera are the results obtained
from (2) and (4), respectively. Hyperparameters λ1 and λ2
control the weight of each result in the final
classification step and correspond to LiDAR-based 3D
object detection and camera-based image classification,
respectively.

4 | DATASETS

This section describes datasets used for 3D object detec-
tion and image classification. To perform 3D object
detection, we used three publicly available datasets and
the proposed ETRI 3D MOD dataset.

4.1 | Publicly available 3D object
detection datasets

4.1.1 | Waymo open dataset (WOD)

WOD [7] is a widely recognized dataset in computer
vision with the largest number of samples for 3D object
detection. It provides sensor data, including data from
one midrange LiDAR sensor, four short-range LiDAR
sensors, and five cameras collected from several cities
across the United States. The dataset comprised 1000 seg-
ments, each with a duration of 20 s and recorded at a

TAB L E 1 Architectures of ResNet-50 and ResNet-50-Tiny.

Layer ResNet-50 ResNet-50-Tiny

conv1 7 � 7, 64, stride 2 3 � 3, 64, stride 1

conv2_x 3 � 3 max pool, stride 2 –

1�1, 64

3�3, 64

1�1, 256

2

6
4

3

7
5�3

conv3_x 1�1, 128

3�3, 128

1�1, 512

2

6
4

3

7
5�3

conv4_x 1�1, 256

3�3, 256

1�1, 1024

2

6
4

3

7
5�3

conv5_x 1�1, 512

3�3, 512

1�1, 2048

2

6
4

3

7
5�3

average pool, 4-d fc, softmax

LEE ET AL. 851

frequency of 10 Hz, with a total of 12 million 3D BB
labels for four distinct object classes: vehicles, pedes-
trians, cyclists, and traffic signs.

4.1.2 | PandaSet dataset

PandaSet [37] is a comprehensive dataset that contains
data from various sensors employed in autonomous driv-
ing and aims to help researchers in related fields, such as
3D object detection and semantic segmentation. The data
were collected from various sensors, including a mechan-
ical LiDAR sensor (Hesai Pandar64), forward-facing
LiDAR sensor (Hesai PandarGT), six cameras, and Global
Navigation Satellite System inertial measurement unit
(GNSS-IMU) (NovAtel PwrPak7). The dataset included
more than 100 scenes, each of which was 8 s long and
recorded at 10 Hz. In addition, the dataset provides
labeled data for 3D object detection in 28 different
classes.

4.1.3 | KITTI dataset

The KITTI dataset [6] is a collection of data gathered in
the Karlsruhe region of Germany using a recording
platform equipped with an inertial navigation system,
LiDAR sensor, and cameras. The dataset provides a
benchmark for evaluating object detection and contains
7481 training samples and 7518 test samples. The data-
set primarily enables detection evaluation in three cate-
gories: cars, pedestrians, and cyclists. Typically, the
training data are divided into two sets with approxi-
mately 3712 samples for training and 3769 samples for
validation.

4.2 | Proposed ETRI 3D MOD dataset

We introduce a novel 3D object detection dataset called
the ETRI 3D MOD, which was collected from urban and
campus areas in Daejeon City, Republic of Korea. Three
types of AVs were used for the data collection. Each AV
was equipped with a 64-channel LiDAR sensor (Hesai
Pandar64), high-resolution forward camera (FLIR
CM3-U3-31S4C-CS), and GNSS-IMU (Advanced Naviga-
tion Certus Evo). The dataset consisted of 42 scenes, each
ranging from 2 s to 10 s and collected at 10 Hz. An open-
source annotation tool called SUSTechPoints [38] was
used to annotate the 3D objects. The annotation method-
ology was based on the labeling specifications for
WOD [7]. A total of 6680 frames were annotated, and the
annotated data included more than 235,000 objects
belonging to three classes: vehicles, pedestrians, and
cyclists. Figure 2 shows the data collection platform
and annotation data.

4.3 | Image classification data
from AIHub

AIHub [14] is an integrated artificial intelligence plat-
form that provides more than 20 types of autonomous
driving datasets available only to domestic applicants. We
downloaded the Sensor Fusion Multi-Object Tracking
and Prediction Data dataset [39] from AIHub and used it
to train and validate our image classification model. This
dataset was created for research on multiple object
detection and prediction tasks and consists of 400,000
instances of images and LiDAR data. However, in this
study, we only considered images with a resolution of
2880�1860 pixels. Although the image data contained

F I GURE 2 Data recording platforms and examples of the ETRI 3D MOD dataset. (A) Three different types of platforms: Ioniq, Genesis

G80, and Carnival electric cars. (B) Projected 3D BBs in images (upper three photographs) and point-cloud data (lower three photographs).

Green, vehicles; red, pedestrians; orange, cyclists.

852 LEE ET AL.

annotation information for eight different classes, we uti-
lized only three classes, namely, vehicles, pedestrians,
and cyclists, and cropped the images using the following
equations to store them:

crop_imgw ≥ 10, crop_imgh ≥ 48: ð6Þ

where crop_imgw and crop_imgh are the width and
height of a cropped image, respectively. To create noise-
class data, we first generated candidates by generating
random numbers based on the following conditions:

0≤ x1 ≤ imgw�300,
imgh
4

≤ y1 ≤ imgh�300,

9≤ crop_imgw ≤ 300,

48≤ crop_imgh ≤ 300,

ð7Þ

where x1 and y1 represent the coordinates of the upper-
left corner of the candidates and imgw and imgh represent
the width and height of the image, respectively. As the
top and bottom parts of the image represented the sky
and ground, respectively, we excluded these areas from
data generation. Next, we compared the candidates with
the ground truth and saved only one candidate per image
file with an intersection over union (IoU) [40] of zero
with the ground truth. The IoU was calculated as follows:

IoUðB1,B2Þ¼B1\B2

B1[B2
: ð8Þ

The BBs of the generated candidates and ground truth
are denoted by B1 and B2, respectively.

5 | EXPERIMENTS

5.1 | Experimental settings

As the numbers and types of classes differed for each
dataset, we renamed them using the class names of the
ETRI 3D MOD dataset, as indicated in Table 2. Classes
not shown in the table were not included in this study.

The 3D object detection model in the upper-left
block of Figure 1 was trained and validated using the
WOD, PandaSet, and ETRI 3D MOD datasets. Figure 3
shows the distribution of the data in terms of the num-
ber of frames and objects per frame within the training
and validation sets of the three datasets. Because of the
relatively small size of the ETRI 3D MOD dataset, it
was used only as part of the training dataset. This pre-
vented the 3D object detection model from overfitting
the ETRI 3D MOD dataset and prioritized the establish-
ment of the generalization performance by verifying the
performance of the model using other datasets such as
PandaSet.

The 2D image classification model, shown in the
lower-left block of Figure 1, was trained and validated
using the AIHub dataset. Figure 4A shows the data distri-
bution for each class in the training and validation sets
from the AIHub data.

TAB L E 2 Renaming class names of two different datasets based on ETRI 3D MOD dataset.

ETRI 3D MOD Waymo Open PandaSet

Vehicle Vehicle Car

Pickup_Truck

Medium-sized_Truck

Semi-truck

Towed_Object

Other_Vehicle_Construction_Vehicle

Other_Vehicle_Uncommon

Other_Vehicle_Pedicab

Emergency_Vehicle

Bus

Pedestrian Pedestrian Pedestrian

Pedestrian_with_Object

Cyclist Cyclist Motorcycle

Bicycle

Personal_Mobility_Device

Motorized_Scooter

LEE ET AL. 853

5.2 | 3D object detection results

5.2.1 | Implementation details

We tested three 3D object detection models to con-
struct a LiDAR-based object detection model, as shown
in Figure 1. The primary source of training data was

the WOD dataset. ModelWOD refers to a 3D object
detection model trained and validated using WOD. The
other two models were trained on the PandaSet and
ETRI 3D MOD datasets using different approaches:
training from scratch and utilizing a pretrained model
subsequently trained on WOD. The model trained from
scratch was denoted as ModelP&E. ModelP&E_F repre-
sented a fine-tuned model that used both the PandaSet
and ETRI 3D MOD datasets from ModelWOD, which
enhanced the accuracy and generalization ability of the
model.

To train ModelWOD, we utilized the training set
shown in Figure 3 and configured the detection range of
the model to [�74.88 m, 74.88 m] along the X and Y axes
and [�2 m, 4 m] along the Z axis. Additionally, we
configured the sizes of the pillars to [0.32 m, 0.32 m, 6 m]
along the [X , Y , Z] axes. The maximum number of pillars
was set to 32,000, with a maximum of 20 point-cloud data
points per pillar. For data augmentation, we applied
ground-truth sampling as proposed in [16]. Furthermore,
we excluded the ground-truth samples containing fewer
than five point-cloud datapoints within a 3D cuboid to
improve the quality of the training data. For global
rotation and scaling, we applied values within the ranges
of [�π/4, π/4] and [0.95, 1.05], respectively. The other
training methods were consistent with CPP [21]. The
model was trained for 36 epochs using the AdamW
optimizer [42] with a maximum learning rate of 3�10�3

and a batch size of 4 per graphics processing unit (GPU)
on eight NVIDIA RTX 3090 GPUs.

To train ModelP&E, we used the AdamW opti-
mizer [42] and trained it for 36 epochs with a maximum
learning rate of 3�10�4. ModelP&E_F was fine-tuned for
5 epochs using the same optimizer with a maximum
learning rate of 3�10�3. Ground-truth sampling was
not utilized because it decreased the detection perfor-
mance. Instead, we maintained consistency with the
training methods used for ModelWOD.

5.2.2 | Results

We used the evaluation metric for WOD to evaluate the
performance of our 3D object detection model:

AP¼ 1
100

X

r � R

maxðpðr0Þjr0 ≥ rÞ, ð9Þ

where R¼f0:0, 0:01, 0:02, …, 1:0g and maxðpðr0Þjr0 ≥ rÞ
represent the precision, which is the highest among all
the recall values greater than or equal to r. The IoU
threshold for the vehicle class was 0.7, whereas that for

F I GURE 3 (A) Distributions of data for three different

datasets of 3D objects in terms of numbers of frames in training

and validation sets. (B) Numbers of objects within these frames.

F I GURE 4 Statistics for two different image classification

datasets: (A) AIHub and (B) ETRI 2D MOC.

854 LEE ET AL.

the pedestrian and cyclist classes was 0.5. The label diffi-
culty was divided into two levels. LEVEL_1 corresponded
to objects that had more than five points in the 3D cuboid
or were not marked as LEVEL_2. LEVEL_2 corre-
sponded to objects that had at least one but no more than
five points in the 3D cuboid or were marked as
LEVEL_2.

To validate the performance of ModelWOD on WOD,
we used the validation set shown in Figure 3. We then
evaluated the predicted results for the validation set using
an evaluation server operated by WOD. The results are
listed in Table 3 and show the changes in performance for
the WOD validation set for different modifications to the
CPP [21]. These modifications included removing the
intensity data (NI), using smaller strides in the upsampling
block (SUS), and combining both straegies (ModelWOD).
The evaluation metrics included the mean average preci-
sion (mAP) for all objects and AP/L1 and AP/L2 for indi-
vidual object classes (vehicles, pedestrians, and cyclists).
Compared with CPP, our proposed ModelWOD exhibited
reductions in mAP/L1 and mAP/L2 of 3.45% and 3.32%,
respectively. However, the computational cost was signifi-
cantly reduced by 45.4%, which is a noteworthy advantage
for real-world deployment in autonomous driving applica-
tions, where computational resources are often limited.

To evaluate the model trained on the PandaSet and
ETRI 3D MOD datasets, we used the library of detection

metrics provided by WOD because we conducted the
evaluation on a local server, unlike the model trained on
WOD. The results are summarized in Table 4. Model-

P&E_F had the best performance for all classes among the
three models, particularly for the pedestrian and cyclist
classes. This suggests that pretraining a model on a large
dataset such as WOD can improve its performance, even
when trained on data from different LiDAR sensors.
Based on our findings, the use of pretrained models is
recommended for LiDAR-based 3D object detection tasks
to improve performance.

5.3 | Image classification results

5.3.1 | Implementation details

We utilized the AIHub dataset [39] in Figure 4A to train
our image classification model and classified the objects
into four classes: vehicles, pedestrians, cyclists, and noise.
The vehicle class accounts for 75% of the AIHub dataset,
whereas the cyclist class accounts for only 1.9%, making
it a highly imbalanced dataset. When training a model on
imbalanced data, overfitting to the majority class may
occur, resulting in a low classification performance for
the minority class. To address this issue, we used a data
resampling technique called repeat factor sampling [43]

TAB L E 3 Performance comparison of 3D object detection on Waymo Open validation set. We compared the performance of 3D object

detection models, including those capable of real-time operation on modern GPUs toward integration into AVs. †, reported in [41]; ‡,
reported in [7]. No intensity (NI) indicates the case where intensity data were not used, while smaller upsampling strides (SUS) denotes the

case where the strides of the upsampling block were [0.5, 1, 2] instead of [1, 2, 4]. L1 and L2 refer to LEVEL_1 and LEVEL_2, respectively,

while mAP is the mean average precision.

Params. FLOPs Vehicle Pedestrian Cyclist All
Model (M) (G) AP/L1 AP/L2 AP/L1 AP/L2 AP/L1 AP/L2 mAP/L1 mAP/L2

SECOND [16]† – – 67.90 59.40 57.80 49.80 54.00 52.30 59.90 53.83

PointPillars [17]‡ 4.84 261.36 63.30 55.60 62.10 55.90 – –

CPP [21] 5.22 346.50 74.24 66.12 72.94 65.16 57.58 55.40 68.25 62.23

SECOND+AGO-Net [41] – – 69.20 60.60 59.30 51.80 55.30 53.50 61.27 55.30

CPP-NI 5.22 346.48 73.61 65.47 71.01 63.42 54.78 52.70 66.47 60.53

CPP-SUS 4.81 157.25 72.43 64.44 70.47 62.92 57.51 55.35 66.80 60.91

CPP-NI-SUS (ModelWOD) 4.81 157.23 71.64 63.63 69.20 61.56 53.57 51.55 64.80 58.91

TAB L E 4 Comparison of results for PandaSet validation. L1 and L2 represent LEVEL_1 and LEVEL_2, respectively.

Vehicle Pedestrian Cyclist All
Model AP/L1 AP/L2 AP/L1 AP/L2 AP/L1 AP/L2 mAP/L1 mAP/L2

ModelWOD 60.02 46.01 26.54 19.23 13.42 10.28 33.33 25.17

ModelP&E 68.02 59.67 16.28 13.40 10.06 8.51 31.45 27.19

ModelP&E_F 75.12 67.70 37.62 31.33 24.06 20.27 45.60 39.77

LEE ET AL. 855

to improve the generalization performance of the model.
We applied two techniques to augment data: random
resizing and cropping of an input image as well as hori-
zontal flipping with a probability of 50%. The model was
trained for 100 epochs using a stochastic gradient descent
optimizer [44] with a learning rate of 0.1, momentum of
0.9, and a weight decay of 0.0001. The learning rate
decreased by a factor of 10 at the 50th and 75th epochs.
Training was performed on eight NVIDIA RTX 3090
GPUs with a batch size of 16 per GPU.

5.3.2 | Results

To evaluate the trained model on the AIHub validation
set, we used two evaluation metrics: the accuracy and
balanced accuracy [45]. The accuracy was calculated as
follows:

Accuracy¼
PN

i¼1TPi
PN

i¼1ðTPiþFPiÞ
: ð10Þ

The balanced accuracy was calculated as follows:

Balanced accuracy¼ 1
N

XN

i¼1

TPi

TPiþFNi
, ð11Þ

where N is the number of classes. The evaluation results
of the ResNet50-Tiny model trained using repeat factor
sampling are listed in Table 5. Comparing the perfor-
mance of the ResNet50-Tiny model with and without
repeat factor sampling, it was observed that setting
hyperparameter t to 0.2 resulted in a statistically
significant improvement in the balanced accuracy
(1.25%) compared with the case where t was set to 0 (that
is, no resampling training). However, the improvement
in accuracy was modest (0.24%). These results suggest

that repeat factor sampling with an appropriate value of
t can improve the model performance, particularly in
terms of balanced accuracy. Furthermore, the confusion
matrix in Figure 5 indicates that the ResNet50-Tiny
model exhibited a higher classification performance for
all nonvehicle classes for t¼ 0:2 compared with the case
for t¼ 0.

TAB L E 5 Performance comparison of proposed ResNet50-Tiny model based on hyperparameter t for repeat factor sampling. Threshold

t is a hyperparameter that determines the extent to which rare classes are resampled during training. Value t¼ 0 indicates no resampling.

Image Params. FLOPs Balanced
Model t size (M) (G) ACC. ACC.

ResNet50-Tiny 0 322 23.51 1.31 96.31 87.41

ResNet50-Tiny 0.1 322 23.51 1.31 96.34 87.3

ResNet50-Tiny 0.2 322 23.51 1.31 96.56 88.66

ResNet50-Tiny 0.3 322 23.51 1.31 96.48 87.86

ResNet50-Tiny 0.4 322 23.51 1.31 96.43 88.21

F I GURE 5 Confusion matrices of proposed ResNet50-Tiny

model based on hyperparameter t for repeat factor sampling:

(A) t = 0 and (B) t = 0.2.

856 LEE ET AL.

5.4 | Evaluation on ETRI 2D MOC
dataset

5.4.1 | Dataset

We constructed an ETRI 2D MOC dataset using data
collected from real environments to validate the perfor-
mance of the proposed method. We used the same AV
to collect the ETRI 3D MOD dataset but chose different
locations and times for data collection. The objects
from the three classes were detected using the LiDAR-
based 3D object detection model developed and
evaluated in this study, ModelP&E_F. For objects with a
confidence score of 0.2 or higher, we cropped and
saved the corresponding parts of the objects within the
image using camera calibration information. As shown
in Figure 4B, the annotators classified the saved images
into four classes: vehicles, pedestrians, cyclists, and
noise.

5.4.2 | Results

We evaluated a fusion approach for object detection by
combining the predictions of two different models using
the prediction refinement method outlined in Section 3.3.
The evaluation results are listed in Table 6 and indicate
that the best overall performance was achieved using
hyperparameters (0.7, 0.3), reaching an accuracy of
91.48% and balanced accuracy of 78.1%. ModelP&E_F was
fine-tuned using both the PandaSet and ETRI 3D MOD
datasets, whereas ResNet50-Tiny was trained only on the
public AIHub dataset [39]. Consequently, different cam-
era models were used for training and testing, leading to
a decrease in performance owing to the domain gap.

Despite the lower performance of the ResNet50-Tiny
model compared with that of ModelP&E_F, we demon-
strated the practicality of our proposed method by show-
ing improved performance when fusing the classification
information of the two models.

5.4.3 | Runtime

To assess the runtime performance of the proposed
method, we used the same server (Intel Xeon E5-2690 v4
central processing unit operating at 2.6 GHz and an NVI-
DIA RTX 3090 GPU) and the PyTorch framework [18]
for training to assess the runtime performance of the pro-
posed method. We evaluated the performance of Model-

P&E_F using point-cloud data consisting of the 9831
frames previously used to generate the ETRI 2D MOC
dataset with a batch size of 1. The performance evalua-
tion included both preprocessing (voxelization) and post-
processing (non-maximum suppression) steps. The
experimental results showed a processing speed of
32.8 ms per frame with an average detection rate of 74.5
objects per frame.

Furthermore, we measured the performance of the
ResNet50-Tiny model with the ETRI 2D MOC dataset
and batch size of 32. The measurement time included
preprocessing steps such as image resizing. According to
the experimental results, the inference time was 11.99 ms
per batch, corresponding to 0.36 ms per image. We dem-
onstrated that objects could be detected and classification
results could be refined in real time using the two
methods mentioned above. When applied to autonomous
driving systems, a further reduction in the processing
time may be achieved using optimizers such as
TensorRT [19].

TAB L E 6 Performance comparison of proposed method for different hyperparameters (λ1, λ2) used for prediction refinement. Only the

object classification results from the LiDAR- and camera-based detection models are used when λ1 and λ2 are set to 1.0, respectively.

Model λ1 λ2 ACC. Balanced ACC.

ModelP&E_F 1.0 0 88.58 66.03

ModelP&E_F + ResNet50-Tiny 0.9 0.1 88.58 66.03

ModelP&E_F + ResNet50-Tiny 0.8 0.2 89.99 70.49

ModelP&E_F + ResNet50-Tiny 0.7 0.3 91.48 78.1

ModelP&E_F + ResNet50-Tiny 0.6 0.4 89.88 78.78

ModelP&E_F + ResNet50-Tiny 0.5 0.5 86.56 76.27

ModelP&E_F + ResNet50-Tiny 0.4 0.6 84.46 74.15

ModelP&E_F + ResNet50-Tiny 0.3 0.7 82.97 72.63

ModelP&E_F + ResNet50-Tiny 0.2 0.8 82.02 71.5

ModelP&E_F + ResNet50-Tiny 0.1 0.9 81.34 70.82

ResNet50-Tiny 0 1.0 80.8 70.33

LEE ET AL. 857

5.5 | Evaluation on KITTI dataset

We aimed to demonstrate the generalization ability of the
proposed EMOS method by evaluating its performance
on data collected from an environment different from
that used to train the deep learning model. To this end,
we evaluated the performance of 3D object detection on
the KITTI dataset, which is widely used and publicly
available.

5.5.1 | Implementation details

To assess the performance of 3D object detection on the
KITTI dataset and preprocessed point-cloud data, we
employed the OpenPCDet toolbox [48]. Furthermore,
we conducted experiments using ModelWOD trained on
the Waymo Open dataset for comparison with the results
in [46, 47]. During detection of 3D objects using point-
cloud data from ModelWOD and the KITTI dataset, the
predicted object sizes were slightly larger than those
obtained from the Waymo Open data, despite accurately
predicting the object center coordinates. This issue may
stem from the differences in the average object sizes
between datasets or variations in the point-cloud density
caused by different LiDAR sensors [46]. Moreover, varia-
tions in annotation guidelines may contribute to this
problem. To overcome this issue, we applied a straight-
forward approach called output transformation
(OT) [46]. Instead of adding a fixed value, we multiplied
the predicted sizes by a scale factor.

5.5.2 | Results

To evaluate the performance of 3D object detection on
the KITTI validation set, we used the metrics employed
in the KITTI benchmark. We reported the average preci-
sion (AP) for both BEV and 3D evaluations using 40 recall
positions. For cars, we applied an IoU threshold of 0.7,

whereas for the other objects, the threshold was set to
0.5. Our evaluation specifically focused on the moderate
difficulty level among the available levels of easy, moder-
ate, and hard. Table 7 lists the results of the proposed
method and recent studies [46, 47]. All the models were
trained on the Waymo Open training set for 3D object
detection without using KITTI training data. ModelWOD

exhibited subpar performance because of the domain dis-
parity between the training and test sets. To address this
issue, we used the OT method with a scale factor of 0.9.
Figure 6 shows the AP of car detection using ModelWOD

according to the scale factor. The AP was improved for
all classes by approximately 45.8%, specifically in AP3D
for cars. By fusing ModelWOD (w/OT) and ResNet50-Tiny,
we observed improvements in mAPBEV and mAP3D by
2.41% and 1.99%, respectively, indicating the best perfor-
mance. Thus, we demonstrated the generalization ability
of the proposed method by its superior performance, even
when tested in environments with sensors different from
those used for model training.

6 | CONCLUSIONS

We propose a simple yet effective LiDAR–camera fusion
method to support autonomous driving. We validated the

TAB L E 7 Results of 3D object detection on KITTI validation set. For the OT method, we used a scale factor of 0.9. To fuse ModelWOD

(w/OT) and ResNet50-Tiny models, we set λ1 and λ2 to 0.7 and 0.3, respectively.

Car Pedestrian Cyclist All
Model APBEV AP3D APBEV AP3D APBEV AP3D mAPBEV mAP3D

PointRCNN (w/SN) [46] 71.30 47.10 – – –

SECOND-IoU (w/SN) [47] 78.96 59.20 53.72 50.44 44.61 41.43 59.10 50.36

ModelWOD 53.31 13.65 36.72 32.79 55.21 50.84 48.41 32.43

ModelWOD (w/OT) 76.76 59.43 40.74 34.90 60.24 56.09 59.25 50.14

ModelWOD (w/OT) + ResNet50-Tiny 77.48 60.06 46.44 40.42 61.05 55.90 61.66 52.13

F I GURE 6 Average precision of cars detected by ModelWOD

according to OT scale factor.

858 LEE ET AL.

performance of the proposed method using both our con-
structed ETRI 2D MOC dataset and the publicly available
KITTI dataset. The experimental results demonstrate that
the proposed method performs well in both real-world
and previously unseen environments, demonstrating its
robustness and generalization ability. Our study may con-
tribute to the field of autonomous driving by creating a
new 3D object detection dataset called ETRI 3D MOD,
which we believe will facilitate future research in this
area. Overall, we expect that our study and findings pro-
mote the development of safe and reliable AVs.

ACKNOWLEDGEMENTS
This work was supported by the Institute for
Information & Communications Technology Planning &
Evaluation (IITP) under grant funded by the Korean gov-
ernment (MSIT) (No. 2021-0-00891, Development of AI
Service Integrated Framework for Autonomous Driving)
and the Korean government (MSIP) (No. 2020-0-00002,
Development of Standard SW Platform-Based Autono-
mous Driving Technology to Solve Social Problems of
Mobility and Safety for Marginalized Public Transport
Communities).

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Dongjin Lee https://orcid.org/0000-0003-4527-6214
Seung-Jun Han https://orcid.org/0000-0002-9594-6047

REFERENCES
1. D. Choi, S.-J. Han, K.-W. Min, and J. Choi, PathGAN: Local

path planning with attentive generative adversarial networks,
ETRI J. 44 (2022), no. 6, 1004–1019.

2. S.-J. Han, J. Kang, K.-W. Min, and J. Choi, DiLO: Direct light
detection and ranging odometry based on spherical range
images for autonomous driving, ETRI J. 43 (2021), no. 4,
603–616.

3. J. Kang, S.-J. Han, N. Kim, and K.-W. Min, ETLi: Efficiently
annotated traffic Lidar dataset using incremental and suggestive
annotation, ETRI J. 43 (2021), no. 4, 630–639.

4. Y. Zhou and O. Tuzel, VoxelNet: End-to-end learning for point
cloud based 3D object detection, (IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, UT, USA), 2018, pp. 4490–4499.

5. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, nuScenes: A
multimodal dataset for autonomous driving, (IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA), 2020, pp. 11621–11631.

6. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets
robotics: The KITTI dataset, Int. J. Robot. Res. 32 (2013),
no. 11, 1231–1237.

7. P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W.
Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M.
Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and
D. Anguelov, Scalability in perception for autonomous driving:
Waymo open dataset, (IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA),
2020, pp. 2446–2454.

8. B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S.
Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D.
Ramanan, P. Carr, and J. Hays, Argoverse 2: Next generation
datasets for self-driving perception and forecasting, arxiv
preprint, 2023. DOI 10.48550/arXiv.2301.00493

9. J. Lambert, A. Carballo, A. M. Cano, P. Narksri, D. R. Wong,
E. Takeuchi, and K. Takeda, Performance analysis of 10 models
of 3D LiDARs for automated driving, IEEE Access 8 (2020),
131699–131722.

10. Q. Xu, Y. Zhou, W. Wang, C. R. Qi, and D. Anguelov, SPG:
Unsupervised domain adaptation for 3D object detection via
semantic point generation, (IEEE/CVF International Confer-
ence on Computer Vision (ICCV), Montreal, Canada), 2021,
pp. 15446–15456.

11. X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L.
Tai, TransFusion: Robust Lidar-camera fusion for 3D object
detection with transformers, (IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA), 2022, pp. 1090–1099.

12. X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, Multi-View 3D object
detection network for autonomous driving, (IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA), 2017, pp. 1907–1915.

13. Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S.
Han, BEVFusion: Multi-task multi-sensor fusion with unified
bird’s-eye view representation, (IEEE International Conference
on Robotics and Automation (ICRA)), London, UK), 2023.

14. AIHub, 2023. Available from: https://aihub.or.kr/ [last
accessed February 2023].

15. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, PointNet: Deep learn-
ing on point sets for 3D classification and segmentation,
(IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Honolulu, HI, USA), 2017, pp. 652–660.

16. Y. Yan, Y. Mao, and B. Li, SECOND: Sparsely embedded convo-
lutional detection, Sensors 18 (2018), no. 10, 3337.

17. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O.
Beijbom, PointPillars: Fast encoders for object detection from
point clouds, (IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA), 2019,
pp. 12697–12705.

18. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A.
Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An impera-
tive style, high-performance deep learning library, (International
Conference on Neural Information Processing Systems (NIPS)),
Vancouver, Canada, 2019, pp. 8026–8037.

19. NVIDIA TensorRT, 2023. Available from: https://developer.
nvidia.com/tensorrt [last accessed February 2023].

20. Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Y. Ouyang,
J. Guo, J. Ngiam, and V. Vasudevan, End-to-end multi-view

LEE ET AL. 859

https://orcid.org/0000-0003-4527-6214
https://orcid.org/0000-0003-4527-6214
https://orcid.org/0000-0002-9594-6047
https://orcid.org/0000-0002-9594-6047
info:doi/10.48550/arXiv.2301.00493
https://aihub.or.kr/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

fusion for 3D object detection in LiDAR point clouds, (Confer-
ence on Robot Learning (CoRL)), Osaka, Japan), 2019,
pp. 923–932.

21. T. Yin, X. Zhou, and P. Krahenbuhl, Center-based 3D object
detection and tracking, (IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN,
USA), 2021, pp. 11784–11793.

22. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classi-
fication with deep convolutional neural networks, Commun.
ACM 60 (2017), no. 6, 84–90.

23. K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, (International Confer-
ence on Learning Representations (ICLR), CA, USA), 2015.

24. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper
with convolutions, (IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Boston, MA, USA), 2015,
pp. 1–9.

25. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, (IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA),
2016, pp. 770–778.

26. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
ImageNet: A large-scale hierarchical image database,
(IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Miami, FL, USA), 2009, pp. 248–255.

27. M. Everingham, L. Gool, C. K. Williams, J. Winn, and A.
Zisserman, The Pascal Visual Object Classes (VOC) challenge,
Int. J. Robot. Res. 88 (2010), no. 2, 303–338.

28. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.
Ramanan, P. Doll�ar, and C. L. Zitnick, Microsoft COCO: Com-
mon objects in context, European Conference on Computer
Vision (ECCV), D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, (eds.), Springer International Publishing, Zurich,
Switzerland, 2014, pp. 740–755.

29. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
Densely connected convolutional networks, (IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA), 2017, pp. 4700–4708.

30. Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S.
Xie, A ConvNet for the 2020s, (IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA), 2022, pp. 11976–11986.

31. S. Xie, R. Girshick, P. Doll�ar, Z. Tu, and K. He, Aggregated
residual transformations for deep neural networks, (IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA), 2017, pp. 1492–1500.

32. M. Tan and Q. V. Le, EfficientNet: Rethinking model scaling for
convolutional neural networks, (International Conference on
Machine Learning(ICML), California, USA), 2019, pp. 6105–
6114.

33. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, MobileNets: Efficient
convolutional neural networks for mobile vision applications,
arXiv Preprint, 2017. http://arxiv.org/abs/1704.04861

34. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X.
Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby, An image is worth
16�16 words: Transformers for image recognition at scale,

(International Conference on Learning Representations
(ICLR), Vienna, Austria), 2021.

35. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B.
Guo, Swin transformer: Hierarchical vision transformer using
shifted windows, (IEEE/CVF International Conference on
Computer Vision (ICCV)), 2021, pp. 10012–10022.

36. D. Lee, D.-W. Kang, J. Kang, J.-Y. Kim, K.-W. Min, J.-H. Park,
K.-B. Sung, Y.-S. Song, T.-H. An, Y.-W. Jo, D. Choi, J.-D. Choi,
and S.-J. Han, Apparatus for recognizing object of automated
driving system using error removal based on object classification
and method using the same, Tech. Report US11507783B2. U.S.
Patent. USA, 2022.

37. P. Xiao, S. Shao, Z. Zhang, X. Chai, J. Jiao, Z. Li, J. Wu, K.
Sun, K. Jiang, Y. Wang, and D. Yang, PandaSet: Advanced sen-
sor suite dataset for autonomous driving, (IEEE Intelligent
Transportation Systems Conference (ITSC), Indianapolis,
USA), 2021, pp. 3095–3101.

38. E. Li, S. Wang, C. Li, D. Li, X. Wu, and Q. Hao, SUSTech
POINTS: A portable 3D point cloud interactive annotation plat-
form system, (IEEE Intelligent Vehicles symposium (IV)),
Nevada, USA), 2020, pp. 1108–1115.

39. H. Jung, Sensor fusion multi-object tracking and prediction
data, 2021. Available from: https://aihub.or.kr/ [last accessed
February 2023].

40. M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,
J. M. Winn, and A. Zisserman, The Pascal Visual Object Classes
challenge: A retrospective, Int. J. Comput. Vis. 111 (2014),
98–136.

41. L. Du, X. Ye, X. Tan, E. Johns, B. Chen, E. Ding, X. Xue, and J.
Feng, AGO-Net: Association-guided 3D point cloud object detec-
tion network, IEEE Trans. Pattern Anal. Machine Intell.
(PAMI) 44 (2022), no. 11, 8097–8109.

42. I. Loshchilov and F. Hutter, Decoupled weight decay regulariza-
tion, (International Conference on Learning Representations
(ICLR), LA, USA), 2019.

43. A. Gupta, P. Dollar, and R. Girshick, LVIS: A dataset for large
vocabulary instance segmentation, (IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), California,
USA), 2019, pp. 5356–5364.

44. I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the impor-
tance of initialization and momentum in deep learning, (Inter-
national Conference on Machine Learning (ICML), Georgia,
USA), 2013, pp. 1139–1147.

45. K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M.
Buhmann, The balanced accuracy and its posterior distribution,
(International Conference on Pattern Recognition (ICPR),
Istanbul, Turkey), 2010, pp. 3121–3124.

46. Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M.
Campbell, K. Q. Weinberger, and W.-L. Chao, Train in Ger-
many, Test in the USA: Making 3D object detectors generalize,
(IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Seattle, USA), 2020, pp. 11713–11723.

47. J. Yang, S. Shi, Z. Wang, H. Li, and X. Q, ST3D++: Denoised
self-training for unsupervised domain adaptation on 3D object
detection, IEEE Trans. Pattern Anal. Machine Intell. 45 (2023),
no. 5, 6354–6371.

48. OpenPCDet: An open-source toolbox for 3D object detection
from point clouds, 2020. Available from: https://github.com/
open-mmlab/OpenPCDet [last accessed July 2023].

860 LEE ET AL.

http://arxiv.org/abs/1704.04861
https://aihub.or.kr/
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

49. E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, Randaugment:
Practical automated data augmentation with a reduced search
space, (IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, Seattle, USA), 2020,
pp. 702–703.

50. J. Ngiam, B. Caine, W. Han, B. Yang, Y. Chai, P. Sun, Y. Zhou,
X. Yi, O. Alsharif, P. Nguyen, Z. Chen, J. Shlens, and V.
Vasudevan, StarNet: Targeted computation for object detection
in point clouds. arXiv Preprint, 2019, https://arxiv.org/abs/
1908.11069

51. Z. Yang, Y. Zhou, Z. Chen, and J. Ngiam, 3DMAN: 3D multi-
frame attention network for object detection, (IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR)
(Virtual)), 2021, pp. 1863–1872.

AUTHOR BIOGRAPHIES

Dongjin Lee received his BS degree
from Dankook University, Republic
of Korea, in 2008, and his MS degree
from the University of Science and
Technology, Republic of Korea, in
2013. From 2008 to 2010, he was an
engineer at Samsung S1 Corporation,

Republic of Korea. He has been a researcher at ETRI
since 2013. He is currently working toward the PhD
degree at Chungnam National University, Republic of
Korea. His research interests include computer vision,
machine learning, affective computing, and autono-
mous driving.

Seung-Jun Han received his BE
degree in Control and Instrumenta-
tion Engineering from Pukyong
National University, Busan, Republic
of Korea, in 1998. He received his
MS degree in Electronics Engineer-
ing from Pusan National University,

Busan, Republic of Korea in 2000. From 2000 to 2010,
he worked as a principal researcher at Sane System
Co., Ltd., Anyang, Republic of Korea. In 2011, he was
a researcher in the Department of Aerospace Engi-
neering at KAIST, Daejeon, Republic of Korea. Since
2012, he has been working as a senior researcher at
ETRI, Daejeon, Republic of Korea. His primary
research interests include computer vision, structure
from motion, simultaneous localization and mapping,
and machine learning.

Kyoung-Wook Min received his BS
and MS degrees in Computer Engi-
neering from Pusan National Univer-
sity, Republic of Korea, in 1996 and
1998, respectively. He received his
PhD degree in Computer Engineer-
ing from Chungnam National Uni-

versity, Republic of Korea, in 2012. Since 2001, he has
been a principal researcher at ETRI, Republic of
Korea, and is the director of the Autonomous Driving
Intelligence Research Section. His main research area
is autonomous driving.

Jungdan Choi received her PhD
degree in Image Processing from
Chungnam National University,
Daejeon, Republic of Korea, in 2006
and her BSc and MSc degrees in
Computer Graphics at Chung-Ang
University, Seoul, Republic of Korea,

in 1993 and 1995, respectively. Since 1995, she has
worked as a principal researcher at ETRI. She is also
an assistant vice-president of the Mobility Robot
Research Division, Superintelligence Creative
Research Laboratory, ETRI. Her research interests
include automotive image processing and recognition,
3D modeling, and rendering.

Cheong Hee Park received her PhD
degree in Mathematics from Yonsei
University, Republic of Korea, in
1998. She received her MS and PhD
degrees in Computer Science from
the University of Minnesota, USA, in
2002 and 2004, respectively. Since

2005, she has been a professor at the Department of
Computer Science and Engineering, Chungnam
National University, Republic of Korea. Her research
interests include machine learning, pattern recogni-
tion, and data mining.

How to cite this article: D. Lee, S.-J. Han, K.-W.
Min, J. Choi, and C. H. Park, EMOS: Enhanced
moving object detection and classification via sensor
fusion and noise filtering, ETRI Journal 45 (2023),
847–861. DOI 10.4218/etrij.2023-0109

LEE ET AL. 861

https://arxiv.org/abs/1908.11069
https://arxiv.org/abs/1908.11069
info:doi/10.4218/etrij.2023-0109

