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Abstract

In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states and environments, and if
necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine
their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential
for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary
algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome
used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives
other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates
new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.
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1. Introduction

The evolutionary algorithms (EAs) based on the natural
selection theory have been studied widely as a solution of the
intelligent information processing system. Typically genetic
algorithm (GA) [1-3], genetic programming (GP) [4-5],
evolutionary  strategies (ES) [6-7], and evolutionary
programming (EP) [8] belong to the categories of EAs, and
these have been successfully applied to many different
applications according to the data structure and genetic
operators. The simple genetic algorithm (SGA) was proposed
by J. H. Holland [1] as a computational model of living
system’s evolutionary process and has become popular as a
population-based optimization method. Although SGA provides
many opportunities to obtain a global optimal solution, the
performance of SGA is more or less limited depending on the
predefined fitness function given by a system designer. It is said,
therefore, that SGA works on static fitness landscapes [5].

Natural evolution, however, works on dynamic fitness
landscapes that change over evolutionary time as a result of co-
evolution. Also it is believed that co-evolution between different
species or different organs results in the current state of
complex natural systems. There are many types of co-action
between different species. The co-action between two different
populations has been very important subject in ecology. In
ecology the types of co-action are classified into positive (+) co-
action and negative (-) co-action according to the result of co-
action. From this point of view, there is a growing interest in co-
evolutionary systems, where two populations constantly interact
and co-evolve in contrast with traditional single population-
based evolutionary algorithms. Also it is believed that these
kinds of co-evolutionary methodology are more similar to
biological evolution in nature.

Generally the co-evolutionary algorithms can be classified
into two categories, which are predator-prey co-evolution [9-
10] and symbiotic co-evolution [11]. Predator-prey relation is
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the most well known example of natural co-evolution. As future
generations of predators develop better attacking strategies,
there is a strong evolutionary pressure for preys to defend
themselves better. In such arms races, success on one side is felt
by the other side as failure to which one must respond in order
to maintain one’s chances of survival., This, in turn, calls for a
reaction of the other side. This process of co-evolution can
result in a stepwise increase in complexity of both predator and
prey [9]. Hillis [10] proposed this concept with a problem of
finding minimal sorting network for a given number of data.
Also co-evolution between neural networks and training data
was proposed in the concept of predator and prey [12]. Also a
new fitness measure in a co-evolutionary algorithm has been
discussed in terms of dynamic fitness landscape. Leigh van
Valen, a biologist, has suggested that the “Red-Queen effect”
arising from co-evolutionary arms races has been a prime
source of evolutionary innovations and adaptations [13]. This
means that the fitness of one species changes depending on the
other one.

In this paper, we introduce schema co-evolutionary algorithm
(SCEA) and an extended schema theorem from the SCEA,
where the fitness of a population changes according to the
evolutionary process of the other population. Also we present
how the SCEA works including fitness measure. As a result of
co-evolution the optimal solution can be found more reliably in
a short time with a small population than SGA. We show why
the SCEA works better than SGA in terms of an extended
schema theorem and parasitizing process.

On the other hand, in distributed autonomous robotic systems
(DARS), each robot must behave by itself according to its states
and environments, and if necessary, must cooperate with other
robots in order to carry out their given task. The DARS has
several merits compared with centralized robotic system. Its
most significant merit is that each robot perceives its
environments such as object and the other robot's behavior etc.,
and they determine their behavior independently, and cooperate
with other robots in order to perform the given tasks very well.

The effectiveness of the DARS is revealed as group behavior
and cooperative behavior. The group behavior can be realized
through only sensing its environment. But in the case of
cooperative behavior, additionally high reasoning ability is
required to predict other robot's behavior. It can be achieved by
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communication among robots. Each robot exchanges their state
and information through communication, and they can easily
cooperate in the given tasks. In the DARS, each robot doesn't
necessarily have to know all the information that other robots
have, they only perceive around their environments. In order to
decide their behavior in the system, they communicate with
other robots and renew the information to their environments.

In the DARS, that each robot has evolution ability is
essential in order to increase the performance of system. In this
paper, the schema co-evolutionary algorithm is proposed for the
evolution of collective autonomous mobile robots. Each robot
exchanges the information, chromosome used in this algorithm,
through communication with other robots. Each robot diffuses
its chromosome to two or more robots, receives other robot's
chromosome and creates new species. Therefore if one robot
receives another robot's chromosome, the robot creates new
chromosome. We verify the effectiveness of the proposed
algorithm by applying it to cooperative search problem

2.SCEA and Extended Schema Theorem

2.1 SCEA

Like the other co-evolutionary algorithms, the SCEA has two
different, still cooperatively working populations: a host-
population and a parasite-population. The former is made up of
the candidates of solution and works about the same as
conventional genetic algorithm. The latter is a set of schemata,
which is to find useful schemata called “Building Block” [2],
[3]. Figure 1 shows an overview of the SCEA
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Fig. 1. A block diagram of the SCEA

SGA has four major steps for one generation, which are
evaluation, selection, crossover, and mutation. Our algorithm,
however, has an additional step, parasitizing, before the
selection. After all strings in the host-population are evaluated,
some of them are selected randomly for each schema of the
parasite-population and then parasitized by the corresponding
schema. We evaluate the strings newly generated from
parasitizing and then measure the fitness improvement between
the original string and the parasitized one. We replace the
parasitized string having the largest improvement value with the
corresponding string for each schema. Using the amount of the
improvement we can assign the fitness of each schema in the
parasite-population. Therefore the fitness of each schema in the
parasite-population indicates the usefulness of the schema. We
apply the same process of the SGA to the parasite-population
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after fitness assignment. Now we explain the parasitizing
process in detail.

SGA has four major steps for one generation, which are
evaluation, selection, crossover, and mutation. Our algorithm,
however, has an additional step, parasitizing, before the
selection. After all strings in the host-population are evaluated,
some of them are selected randomly for each schema of the
parasite-population and then parasitized by the corresponding
schema. We evaluate the strings newly generated from
parasitizing and then measure the fitness improvement between
the original string and the parasitized one. We replace the
parasitized string having the largest improvement value with the
corresponding string for each schema. Using the amount of the
improvement we can assign the fitness of each schema in the
parasite-population. Therefore the fitness of each schema in the
parasite-population indicates the usefulness of the schema. We
apply the same process of the SGA to the parasite-population
after fitness assignment. Now we explain the parasitizing
process in detail.

As above-mentioned, the parasite-population searches useful
schemata and delivers the genetic information to the host-
population by parasitizing process. We explain this parasitizing
process with, the fitness measure of the parasite-population and
the alteration of a string in the host-population. Figure 2 shows
the parasitizing process. The fitness of a schema in the parasite-
population depends on the n strings sampled in the host-
population. In the context of a computational model of co-
evolution, the parasitizing means that the characters of a string
are replaced by the fixed characters of a schema. The other
positions of the string, i.e., the same positions of don’t-care
symbol (*) in the schema, hold their own values. Thus

o ¥, if p, character of y is fixed
"V othomise L0<p<i-1) )

where p is the index of the locus of a string, x7 is a value of p,,

locus of astring x, and / isthe number of bits in a string, In figure 2,

N is the population size of the host-population, M is that of the
parasite-population, and » is the size of each M sub-populations

Hst:pop aopy

Fig. 2. Parasitizing

Figure 3 illustrates an example of the parasitizing. The
process of the SCEA is, in brief, that a useful schema
found by the parasite-population is delivered to the host-
population according to the fitness proportionate, and the
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evolutionary direction of the parasite-population is
determined by the host-population.

Ol OIRNIO,
y@**@*

A Y A h A

% [ 1]lo]1]0]0

X; 0

Fig. 3.
(x, is parasitized by y into -i:,y ).

One example of the parasitizing

The fitness Fy of a string y in the parasite-population is

determined as follows:

Step 1:

Copy a host-population and then determine a set of strings to
be parasitized, that is, select randomly 7 strings in the host-
population copy which are parasitized by a schema y. Even
though the same string is simultaneously selected for the other
schema, it still has opportunities to explore different schema
space depending on each schema.

Step 2 : ‘

Let x,---,x, be the sampled strings, and %, -+, %,, be

the parasitized strings. A parasitezed string is the sampled string
that is parasitezed by a schema y.
Step 3 :

To determine the fitness of a string y in the parasite-
population, we set a fitness function of one time parasitizing as
the difference in the fitness.

1 =rG)-f(x), G =1,n) @)

where f(x,) is the fitness of a string x,,and f(% ») is the

[
fitness of a parasitized-string fciy .

Step 4 :

For each of M schemata, the best individual, which has the
largest improved value, is replaced by the corresponding one of
the original host-population. When there are no improved ones
in the sub-population there is no replacement (as shown second
sub-population in Fig. 2). As a result of the replacement, the
instances of useful (useless) schemata are increased (decreased)
in the host-population. Furthermore new schemata which do not
exist in the original host-population can be added.

Step 5 :

Since the parasite-population plays a role of finding useful

schemata, the fitness Fy of a schema y is defined as the sum

of the fitness improvement:

F,0% max[0, f,] 3)

Equation (3) means that the fitness of a schema in the

parasite-population is depending on the parasitized strings in the
host-population. In the next sub-section, we derive an extended
schema theorem from this schema co-evolutionary algorithm
and show that it covers the GA-hard problems.

2.2 Extended schema theorem

The SCEA is based on the Schema Theorem and the Building
Block Hypothesis [2], [3]. First we discuss the original
theoretical foundations of the genetic algorithm. SGA uses a
population of genotypes composed of fixed-length binary
strings called chromosome. SGA evaluates a population of
genotypes with respect to a particular environment. The
environment includes a fitness function that rates the genotype’s
viability. SGA reproduces genotypes proportionally to their
relative fitness using a variety of genetic operators. One
operator, termed crossover, uses the recombination of two
parents to construct novel genotypes. The mutation operator
creates new genotypes from a single parent with a probabilistic
alteration.

The theoretical foundations of genetic algorithms rely on a
binary string representation of solutions, and a notion of a
schema. A schema is a subset of the search space, which
matches it on all positions other than don’t care symbol (*).
There are two important schema properties, order and defining
length. The number of 0 and 1 positions, i.e., fixed positions is
called the order of a schema H (denoted by o(H)). And the
defining length of a schema A is the distance between the first
and the last fixed string positions (denoted by &H)). For
example, the order of ***00**1** js 3, and its defining length
is 4. An instance of a schema H is a bit string which has exactly
the same bit values in the same positions that are fixed bits in H.
For example, 1000, 1010, 1100, and 1110 are instances of a
schema 1**0.

Another property of a schema is its fitness at generation £,
denoted by f(H, k). It is defined as the average fitness of all
strings in the population matched by that schema H. Therefore,

the combined effect of selection, crossover, and mutation on the
expected number of a schema is formulated by:

. Ao, .8 4
m(H , k) [1 P TR o(H):|()

m(H k+1)y > LELD
S(¥)

where m(H,k) is the number of instances of a schema H at

generation k, 7([() is the average fitness of all individuals in

the population, / is the number of bits in a string, p, is the

crossover rate, and p, is the mutation probability.

The above equation is known as the Schema Theorem [1]-[3]
and means that the short, low-order, and above-average schema,
called as the Building Blocks, would receive an exponentially
increasing number of strings in the next generations. If there
does not exist a solution in the Building Blocks, however,
simple genetic algorithm might fail to find that solution. The
deceptive function is most well known as a problem violating
above theorem. T. Kuo and S. Y. Hwang [14] showed that
disruptive selection works better than directional selection on
the deceptive functions.

Now we derive an extended schema theorem relevant to the
SCEA, and show that it covers the deceptive functions. If a
string y in the parasite-population represents a schema H, it is
clear that the above parasitizing process can be interpreted, in
the context of useful (useless) schemata, as a process of
increasing (decreasing) the number of instances of a schema H
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in the host-population. If we recall the original schema theorem,
the number of instances of a schema H at the generation k is
changed by the amount of newly generated instances of that

schema. As for the SCEA, the number of instances m'(H,k)
of a schema H in the host-population is formulated by

m'(H k) = m(H, k) + i(H, k) 4

where m(H,k) is the original number of instances of a

schema H in the host-population, and #(H,k) is the number

of instances which are increased or decreased as a result of the
parasitizing process.

Since the number of instances of a schema is increased when
at least one of the parasitized strings has improved, it can be
formulated as follows:

MHR= Y, Af,>0 ~ 3 Af,>0

sy i (6)
= Y ASE)-FENF0) - Y MR- N0
Sy X el Syl

where A(A)=1 if a proposition 4 is true; =0 otherwise,
I, is asetof instances of a schema H, g =arg max fw and
Sy is a set of higher-order schemata of a schema H (for
example, if H is 1** then §, ={1**, 1¥0, 1*1, 10*, 11*, 100,
101, 110, 111}). In this case, a string x, is replaced with the
one of the » parasitized strings having best-improved fitness.
Also we can formulate the fitness of a schema H regarding
the SCEA from its definition. Let us denote by f'(H,k) the

fitness of a schema H after parasitizing process at the generation
k. Then

IO EDINICHEDINIC)
’ ,k — xely 2, ely xely
S0 m(H, k) + m(H, k) @

where I;', and [, are the index sets of increased and

decreased instances of a schema H after the parasitizing process,
respectively.

Combining the above equations, the schema theorem can be
rewritten by

m(H, k+1) 2 =——+ -@——p o(H)} (8)

fHF) o (H.K)- [
0!

Since the fitness of a schema H is defined as the average

fitness of all strings in the population matched by that schema H,

the fitness f'(H,k) of a schema H after parasitized can be
approximated by ['(H,k)U f(H,k) .
number of strings in the host-population N[ n, where n is
the number of strings to be parasitized, the above approximation
makes sense for the large number of generation sequences [7].

Consequently we obtain an extended schema theorem
regarding the SCEA, that is

Especially, if the
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Compared with the original Schema Theorem in equation (4),
the above equation means that the SCEA allocates much more
increasing (decreasing) numbers of trials to the short, low-order,
and above- (below-) average schema H than SGA does. Because
the parasite-population explores the schema space, a global
optimum could be found more reliably in shorter time than SGA.
When an instance of the schema containing a solution does not
exist in the population, SGA may fail to find global optima. On
the other hand, as the useful schema can be found with the
parasite-population and it prevails in the host-population via
parasitizing process, the SCEA provides much more
opportunities to converge on the global optima. We can easily
compare the performance of the SCEA with that of SGA in
solving function optimization problems including false-peaks
and deceptive functions.

3. Examination of Parasitizing Process

In this section, we observe the merits of the SCEA by
examination of parasitizing process. The first merit is that the
SCEA prov1des more various searching space with small
population size than SGA by parasitizing process.

In SGA, one individual defined a binary string with length

I can only search the region that is 1/ 2" of the whole
searching space given for the problem. Therefore, it is limited to
change one individual’s searching region by crossover and
mutation from generation to generation.

But one schema has various searching space in accordance
with the number of don’t care symbol of the schema. A schema
all of whose bits are don’t care symbols has the whole searching
space given for the problem as it’s searching region and the
searching region of a schema is reduced by one half when the
one don’t care symbol of the schema replaced by a fixed value.
Also two schemata that have the same number of don’t care
symbol can have different searching region according to the
locus of don’t care symbol.

By masking, therefore, the SCEA provides various searching
region to the individual in the host-population from the
searching space of the schemata in the parasite-population. And
the SCEA has more chance to find the global optima than SGA.

The second merit is that the SCEA has chance to converge
more rapidly than SGA by parasitizing process. In equation (5)
~ (9), we showed that the number of instances of the useful
schemata more increases than SGA. In other words, when a
schema has above-average fitness value, the number of
instances of the schema more increases by m(H,k) than

SGA. And when a schema has below-average fitness value, the
number of instances of the schema more decreases by
m(H, k) than SGA. As a result of this process, the number of
the individuals with above-average fitness value in the host-
population of the SCEA more rapidly increases and converges
than SGA.

The third merit is that the SCEA is more robust than SGA. In
the SCEA, because the change of the individual after masking
will occur if fqy - ( in equation (6), the useful individuals in

the host-population can never be replaced with the individuals
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that have lower fitness value by parasitizing process. Therefore,
if there is no crossover or mutation in the useful individual, it
survives and goes to the next generation.

4. Cooperative Behavior of DARS

4.1 Sensing and Communication in DARS

To execute complicated and sophisticated tasks by
cooperative behaviors, it is essential to use communication in
DARS. In general, communication can be classified into global
and local one. A global communication is effective for small
number of robots. However, when the number of robots goes on
increasing, this becomes difficult to be realized because of
limited communication capacity and increasing amount of
information to handle. Also the problems such as
communication interference and improper message transmission
occur. Thus we adopt a local communication system in which
each robot transmits information locally because it is possible to
prevent not only overflow of information but also complexity of
communication.

In this paper, we use infrared sensor for sensing and
communication. A robot can sense distance to other robots and
obstacle, and it transmits information infrared pulses in
sequence. In case that each robot face each other,
communication between robots are carried out. In addition to
this, a robot has color sensor that can distinguish object from
obstacle in front of robot.

Each robot diffuses information around with sign-board
model. If a robot encounters another robot whose fitness is
higher than it, these two robots communicate each other by
message-passing model.

4.2 Co-evolution Scheme in DARS

In the DARS, evolution ability of each robot is essential in
order to increase the performance of system. In this section 4,
the schema co-evolutionary algorithm is proposed for the
evolution of collective autonomous mobile robots. Each robot
exchanges the information, chromosoime used in this algorithm,
through communication with other robots. Each robot diffuses
its chromosome to two or more robots, receives other robot's
chromosome and creates new species. Therefore, if one robot
receives another robot's chromosome, the robot creates new
chromosome.

#
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P : 100}‘ P, : 11001
Robot,

. : Autonomous 00111(old)

Mobile Robot a : Task

P,: 10010 ___w_______.
P, i 11001+ oontt
Schema : 1*0%* —T¥1*0**

Parasitizing

Fig. 4. Block diagram of proposed system

The block diagram of proposed system in this paper is
shown in figure 4. Each robot diffuses information around such
as the sign-board model. If a robot encounters another robot
whose fitness is higher than own, these two robots communicate
each other by message-passing model. When a robot encounters
more excellent robot than own self, this robot obtains the
chromosome through communication, and reproduces a new
chromosome using the schema co-evolutionary algorithm. The
process, roughly speaking, is as follows. With the elapse of time,
the robot makes various schemata from chromosomes obtained
by communication. After this processing, the robot reproduces a
new chromosome through parasitizing process according to the
figure 3. If this new chromosome is more excellent than own
chromosome for the given tasks, the robot exchanges its own
chromosome into the new chromosome.

4. Conclusion

In this paper, the schema co-evolutionary algorithm is
proposed for the evolution of collective autonomous mobile
robots. Each robot exchanges the information, chromosome
used in this algorithm, through communication with other
robots. Each robot diffuses its chromosome to two or more
robots, receives other robot's chromosome and creates new
species. Therefore if one robot receives another robot's
chromosome, the robot creates new chromosome. We verified
the effectiveness of the proposed algorithm by applying it to
cooperative search problem. In this system, there are many type
of chromosome and it helps system to adapt for dynamic
environment. In the system which is composed of multiple
mobile robots, it is difficult to make good cooperative behaviors
considering with dynamic environment. In recent years, many
researchers are interested in artificial life approach instead of
conventional Al approach. Especially, neural networks having
the reinforcement learning, evolutionary computation, fuzzy
system, and the fusion of these are paid attention to. In this
paper, we realized the cooperative behavior by scheme co-
evolutionary algorithms that proper behaviors can emerge and
grow instead of making perfect program.
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