• Title/Summary/Keyword: autonomous operation technology industry

Search Result 28, Processing Time 0.024 seconds

A study on autonomy level classification for self-propelled agricultural machines

  • Nam, Kyu-Chul;Kim, Yong-Joo;Kim, Hak-Jin;Jeon, Chan-Woo;Kim, Wan-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.617-627
    • /
    • 2021
  • In the field of on-road motor vehicles, the level for autonomous driving technology is defined according to J3016, proposed by Society of Automotive Engineers (SAE) International. However, in the field of agricultural machinery, different standards are applied by country and manufacturer, without a standardized classification for autonomous driving technology which makes it difficult to clearly define and accurately evaluate the autonomous driving technology, for agricultural machinery. In this study, a method to classify the autonomy levels for autonomous agricultural machinery (ALAAM) is proposed by modifying the SAE International J3016 to better characterize various agricultural operations such as tillage, spraying and harvesting. The ALAAM was classified into 6 levels from 0 (manual) to 5 (full automation) depending on the status of operator and autonomous system interventions for each item related to the automation of agricultural tasks such as straight-curve path driving, path-implement operation, operation-environmental awareness, error response, and task area planning. The core of the ALAAM classification is based on the relative roles between the operator and autonomous system for the automation of agricultural machines. The proposed ALAAM is expected to promote the establishment of a standard to classify the autonomous driving levels of self-propelled agricultural machinery.

A Study on the Industrial Competitiveness Analysis of Domestic Autonomous Operation Technology Industry Based on the Porter's Diamond Model (국내 자율운항기술 분야의 산업경쟁력 분석 연구 - 포터(Porter)의 다이아몬드 모델을 기반으로)

  • PARK, Hye-Ri;PARK, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2022
  • Recently, various digital technology issues such as e-Navigation, Maritime Autonomous Surface Ship (MASS) and Smart ships have constantly emerged in the maritime industry, based on the fourth industrial revolution. The International Maritime Organization is gradually tightening regulations for marine safety and marine environmental protection, and these strengthened regulations are leading to new maritime industries. Thus, the purpose of this study was to design a suitable model to analyze the industrial competitiveness of domestic autonomous operation technology industry, based on the Porter's diamond model. Based on a total of five evaluation factors and 13 detailed factors, the industrial competitiveness of the domestic autonomous operation technology industry was evaluated qualitatively and quantitatively. This industry, which is in the early stage of industrial development, was evaluated as 16.9 points relative to indexing industrial competitiveness. Currently, it is characterized by the simultaneous development of related regulations and core technologies, from the establishment of the scope of the industry. The industrial competitiveness evaluation considering these industrial characteristics is expected to serve as the basis for strategic support and new industrial policy, and impact a wide range of related industries such as shipping, logistics, ports, and shipbuilding and equipment industries.

Analyzing the Factors Influencing the Intention to Adopt Autonomous Ships Using the TOE Framework and DOI Theory

  • Park, You-Jin;Jeong, Yu-Jin;An, Young-Su;Ahn, Jong-Kap
    • Journal of Navigation and Port Research
    • /
    • v.46 no.2
    • /
    • pp.134-144
    • /
    • 2022
  • The development and operation of autonomous ships are spotlighted as a next-generation technology that will provide newbenefits for the maritime business during the fourth industrial revolution. To expand the adoption of autonomous ships, the much more interest of the nation and the industries will have to be changed to actual adoption in shipping companies. For this, it is judged that research to identify the factors impacting the adoption intention of autonomous ships should be preceded. However, most studies on autonomous ships have focused on developing the technology, revising the law, establishing policies, and managing human resources, with few studies on influencing factors in the adoption of autonomous ships. A model, to identify the factors that impact the intention to the adoption of autonomous ships, based on the theory of diffusion of innovation and the TOE framework was developed. The suggested model was verified through empirical analysis targeting the shipping companies and the marine industries in Korea. As the result of this study, it was found that top management support, financial slack, and competitive intensity significantly impacted the intention to adopt autonomous ships. Additionally, it was revealed that the overall awareness of autonomous ships among Korean shipping companies is poor.

Application of a Dynamic Positioning System to a Maritime Autonomous Surface Ship (MASS)

  • Kim, Jeong-Min;Park, Hye Ri
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.435-440
    • /
    • 2022
  • The development and introduction of a Maritime Autonomous Surface Ship (MASS) are some of the most important changes leading to the fourth industrial era in the maritime area. The term 'MASS' refers to a ship operating independently, without human intervention, to reduce maritime accidents caused by human errors. Recent UK findings MASS also noted that particularly the dynamic positioning system will be considered to apply as newly function to a MASS. The DP system, a ship system developed decades ago and used for specific purposes like offshore operations, provides various functions to facilitate the accurate movements of the vessel, and operators can make decisions within the DP system, in addition to the ordinary ship system. In this paper, it would like to present the connection and application method with the main technical elements of the DP system in connection with the main technology of the DP system to achieve the safe operation of a MASS. In particular, among various position reference systems, the capability plot function of DP system, and the "follow target" mode in the operation mode are attractive functions that can contribute to the safe operation of autonomous ships.

Analysis of the Prediction of Operation Processes based on Mode of Operation for Ships: Applying Delphi method

  • HyeRi Park;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.267-275
    • /
    • 2023
  • The digital transformation of the shipbuilding, shipping, and logistics sectors is predicted to lead to the introduction of autonomous ships and changes in the way ships are operated. The co-existence of various operation forms, such as autonomous operation and remote operation, with the existing operation methods is expected to lead to the transformation of the ship operation process and the emergence of new stakeholders. This paper studies the future ship operation process according to the change in ship operation method, predicts the change in the operating environment of future ships, and derives functional requirements by major tasks and stakeholders. The Delphi technique is applied to construct a ship operation scenario from the planning stage of voyage and cargo transport to the stage of arrival at the final destination port and discharge of cargo, and to predict future work changes by task and actor. Seafarers' activities are expected to be minimised by remote and autonomous operation, and experts in each field are expected to have responsibilities and tasks in different aspects of ship operation.

A Basic Study on Mode of Operation for Maritime Autonomous Surface Ship

  • Jeong-Min, Kim;Hye Ri, Park
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.162-163
    • /
    • 2023
  • As the development of the 4th industiral revolution in the maritime industry has progressed, the technical development of autonomous ships, and the development of international regulations have been accelerated. In particular, the IMO Maritime Safety Committee(MSC) has established a road-map for the development of the non-mandatory goal-based MASS instrument(MASS Code) and started developing a non-mandatory MASS Code at MSC 105th meeting. Many countries are actively participating in the Correspondence Group on the development of MASS Code, and the development of detailed requirements for MASS functions in the MASS Code is underway. Especially, the concept of "Mode of Operation" for MASS functions was mentioned in the Correspondence Group for the first time, and it is expected that discussions on these modes will be conducted from the IMO MASS JWG meeting to held in April 2023. The concept of "Mode of Operation" will be useful in explaining MASS and MASS functions and will be discussed in the future for the development of MASS Code. This paper reviews the contents of the IMCA M 220 document, which provides guidelines on operating modes, to conduct research on the benchmark for setting the operating modes of MASS.

  • PDF

Strategies for Autonomous MUM-T Defense Industry (자율화 MUM-T 국방산업 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2023
  • Recently, advancement of AI-enabled autonomous MUM-T combat system and industrial revitalization are rapidly emerging as global issues. However, the Defense Business Act of the Ministry of National Defense in Korea is judged to be somewhat insufficient compared to NATO leading countries in advancement of operation part of a weapon system as MUM-T is centered on a weapon system's own device. We established the concept of AI-enabled autonomous MUM-T to strengthen international competitiveness of complex combat systems such as future global UGV, UAV, and UMS. In addition, NATO and US-centered autonomy, interoperability, and data standardization-based defense AI MUM-T top-level platform construction and operation plan, establishment of a national defense innovation committee such as the National Science and Technology Advisory Council, review and advisory function reinforcement, and additional governance measures are proposed.

Cybersecurity Development Status and AI-Based Ship Network Security Device Configuration for MASS

  • Yunja Yoo;Kyoung-Kuk Yoon;David Kwak;Jong-Woo Ahn;Sangwon Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.57-65
    • /
    • 2023
  • In 2017, the International Maritime Organization (IMO) adopted MSC.428 (98), which recommends establishing a cyber-risk management system in Ship Safety Management Systems (SMSs) from January 2021. The 27th International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA) also discussed prioritizing cyber-security (cyber-risk management) in developing systems to support Maritime Autonomous Surface Ship (MASS) operations (IALA guideline on developments in maritime autonomous surface ships). In response to these international discussions, Korea initiated the Korea Autonomous Surface Ship technology development project (KASS project) in 2020. Korea has been carrying out detailed tasks for cybersecurity technology development since 2021. This paper outlines the basic concept of ship network security equipment for supporting MASS ship operation in detailed task of cybersecurity technology development and defines ship network security equipment interface for MASS ship applications.

Trends in AI Technology for Smart Manufacturing in the Future (미래 스마트 제조를 위한 인공지능 기술동향)

  • Lee, E.S.;Bae, H.C.;Kim, H.J.;Han, H.N.;Lee, Y.K.;Son, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.60-70
    • /
    • 2020
  • Artificial intelligence (AI) is expected to bring about a wide range of changes in the industry, based on the assessment that it is the most innovative technology in the last three decades. The manufacturing field is an area in which various artificial intelligence technologies are being applied, and through accumulated data analysis, an optimal operation method can be presented to improve the productivity of manufacturing processes. In addition, AI technologies are being used throughout all areas of manufacturing, including product design, engineering, improvement of working environments, detection of anomalies in facilities, and quality control. This makes it possible to easily design and engineer products with a fast pace and provides an efficient working and training environment for workers. Also, abnormal situations related to quality deterioration can be identified, and autonomous operation of facilities without human intervention is made possible. In this paper, AI technologies used in smart factories, such as the trends in generative product design, smart workbench and real-sense interaction guide technology for work and training, anomaly detection technology for quality control, and intelligent manufacturing facility technology for autonomous production, are analyzed.

A Fundamental Study on Mode of Operation for Maritime Autonomous Surface Ship(MASS) - Based on review of IMCA M 220

  • Jeong-Min Kim;HyeRi Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.163-170
    • /
    • 2023
  • As the development of the 4th industrial revolution in the maritime industry has accelerated, the technical development and progress of maritime autonomous surface ship(MASS), and the development of international regulations have been accelerated. In particular, the IMO Maritime Safety Committee(MSC) has established a road-map for the development of the non-mandatory goal-based MASS instrument(MASS Code) and started developing a non-mandatory MASS Code at MSC 105th meeting. Many countries are actively participating in the Correspondence Group on the development of MASS Code, and the development of detailed requirements for MASS functions in the MASS Code is underway. Especially, the concept of "Mode of Operation" for MASS functions was mentioned in the Correspondence Group for the first time, and it is expected that discussions on these modes will be conducted from the IMO MASS JWG meeting to held in April 2023. The concept of "Mode of Operation" will be useful in explaining MASS and MASS functions and will be discussed continually for the development of MASS Code. This paper reviews the contents of the IMCA M 220 document, which provides guidelines on operating modes, to conduct research on the benchmark for setting the operating modes of MASS.