• 제목/요약/키워드: autonomous navigation

검색결과 829건 처리시간 0.025초

차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어 (Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach)

  • 임미섭;임준홍;오상록
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

도심환경 자율주행을 위한 자율매니저 기반 경로계획 기법 (Local Path Planning Method based on Autonomy Manager for Autonomous Navigation in Urban Environment)

  • 이영일;안성용;김종희
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.719-725
    • /
    • 2013
  • In this paper, we propose a local path planning method based on RANGER algorithm and autonomy manager for autonomous navigation of UGV in urban environment. LPP method is designed to generate the local path in sensing area by using lane and curb of pavement and autonomy manager is designed to make a decision which transit the status of LPP component to a proper status for current navigation environment. A field test is conducted with scenarios in real urban environment in which crossroad, crosswalk and pavement are included and the performance of proposed method is validated.

Measurement Level Experimental Test Result of GNSS/IMU Sensors in Commercial Smartphones

  • Lee, Subin;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.273-284
    • /
    • 2020
  • The performance of Global Navigation Satellite System (GNSS) chipset and Inertial Measurement Unit (IMU) sensors embedded in smartphones for location-based services (LBS) is limited due to the economic reasons for their mass production. Therefore, it is necessary to efficiently process the output data of the smartphone's embedded sensors in order to derive the optimum navigation values and, as a previous step, output performance of smartphone embedded sensors needs to be verified. This paper analyzes the navigation performance of such devices by processing the raw measurements data output from smartphones. For this, up-to-dated versions of smartphones provided by Samsung (Galaxy s10e) and Xiaomi (Mi 8) are used in the test experiment to compare their performances and characteristics. The GNSS and IMU data are extracted and saved by using an open market application software (Geo++ RINEX Logger & Mobile MATLAB), and then analyzed in post-processing manner. For GNSS chipset, data is extracted from static environments and verified the position, Carrier-to-Noise (C/N0), Radio Frequency Interference (RFI) performance. For IMU sensor, the validity of navigation and various location-based-services is predicted by extracting, storing and analyzing data in static and dynamic environments.

Optimal Route Planning for Maritime Autonomous Surface Ships Using a Nonlinear Model Predictive Control

  • Daejeong Kim;Zhang Ming;Jeongbin Yim
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.66-74
    • /
    • 2023
  • With the increase of interest in developing Maritime Autonomous Surface Ships (MASS), an optimal ship route planning is gradually gaining popularity as one of the important subsystems for autonomy of modern marine vessels. In the present paper, an optimal ship route planning model for MASS is proposed using a nonlinear MPC approach together with a nonlinear MMG model. Results drawn from this study demonstrated that the optimization problem for the ship route was successfully solved with satisfaction of the nonlinear dynamics of the ship and all constraints for the state and manipulated variables using the nonlinear MPC approach. Given that a route generation system capable of accounting for nonlinear dynamics of the ship and equality/inequality constraints is essential for achieving fully autonomous navigation at sea, it is expected that this paper will contribute to the field of autonomous vehicles by demonstrating the performance of the proposed optimal ship route planning model.

Challenges and Real-world Validation of Autonomous Surface Vehicle Decision-making System

  • Mingi Jeong;Arihant Chadda;Alberto Quattrini Li
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.357-359
    • /
    • 2022
  • Autonomous decision-making is key to safe and efficient marine autonomy, as global marine industry comprises over 90 percent of the world's cargo transportation. Challenges of the real-world validation in the aquatic domain limits the wide-spread of ASVs despite their promising societal impacts. We propose and demonstrate the real-world validation platform and comprehensive algorithm steps. Such a framework will serve as a more explainable and reliable decision-making system of ASVs as well as autonomous vehicles in other domains.

  • PDF

안전한 자율운항을 위한 요구 조건 분석 (The Analysis of Requirements for Safe Self-Operation)

  • 홍성화
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.508-510
    • /
    • 2021
  • 5G버티컬들뿐만 아니라 자율운항서비스에서도 요구되는 5G요소기술들(예: 5G버티컬 위성, 5G NR(New Radio) 기반 기기 간 직접통신 기능 등)에 대한 국제표준화가 현재 진행 중임으로 자율운항선박 관련 해양통신서비스에 대한 3GPP 국제표준화를 통해 국제표준 기반 솔루션이 갖는 규모의 경제 크기 이점을 활용하면서 자율운항서비스에 활용 가능할 것으로 기대된다. 제 4차 해양산업혁명시대에 출현할 자율운항선박 관련 ICT융합시장 생태계 구축 및 국제표준 기반 핵심통신기술을 선점하기 위해 (1) 글로벌 호환성을 갖는 디지털 통신시스템 및 게이트웨이 개발, (2) 차세대통신 기반 핵심요소기술 확보, (3) 연관기술의 국제화를 위한 국제표준화 추진이 필요하다고 판단된다. 이를 위해 거리별 통신별 서비스 분석을 통한 데이터 분석 및 표준기술이 개발되어야 할 것이다. 현재 자율운항 선박 운영을 위한 요구 조건들은 주로 3가지 항목으로 분류할 수 있다.

  • PDF

Monitoring of the Jamming Environment in the GNSS L5 Band in Korea Region

  • Lee, Hak-beom;Song, Young-Jin;Park, Dong-Hyuk;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.353-361
    • /
    • 2021
  • This paper presents the jamming effect on the L5 band of Global Navigation Satellite System (GNSS) by analyzing real data collected via measurement campaigns in Korea region. In fact, the L5 band is one of the dedicated bands for various satellite navigation systems such as Global Positioning System (GPS), Galileo, BeiDou (BDS), and Quasi Zenith Satellite System (QZSS). And this band is also allocated along with various systems used for aeronautical radio navigation systems (ARNS). Among ARNS, the Distance Measuring Equipment (DME) and the Tactical Air Navigation System (TACAN) are systems that transmit and receive strong power pulse signals, which may cause unintentional jamming in the reception of GNSS signals. In this paper, signals in the main lobe of GPS L5, Galileo E5a, BDS B2a, and QZSS L5 are collected in Korean region to confirm whether the jamming effect exists in the band. And then, the pulse blanking technique, which is a simple signal processing technique capable of responding to pulsed jamming, is applied to analyze the jamming effect of DME/TACAN on the L5 band.

Localization Requirements for Safe Road Driving of Autonomous Vehicles

  • Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.389-395
    • /
    • 2022
  • In order to ensure reliability the high-level automated driving such as Advanced Driver Assistance System (ADAS) and universal robot taxi provided by autonomous driving systems, the operation with high integrity must be generated within the defined Operation Design Domain (ODD). For this, the position and posture accuracy requirements of autonomous driving systems based on the safety driving requirements for autonomous vehicles and domestic road geometry standard are necessarily demanded. This paper presents localization requirements for safe road driving of autonomous ground vehicles based on the requirements of the positioning system installed on autonomous vehicle systems, the domestic road geometry standard and the dimensions of the vehicle to be designed. Based on this, 4 Protection Levels (PLs) such as longitudinal, lateral, vertical PLs, and attitude PL are calculated. The calculated results reveal that the PLs are more strict to urban roads than highways. The defined requirements can be used as a basis for guaranteeing the minimum reliability of the designed autonomous driving system on roads.

동적 환경에 강인한 장면 인식 기반의 로봇 자율 주행 (Scene Recognition based Autonomous Robot Navigation robust to Dynamic Environments)

  • 김정호;권인소
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.245-254
    • /
    • 2008
  • Recently, many vision-based navigation methods have been introduced as an intelligent robot application. However, many of these methods mainly focus on finding an image in the database corresponding to a query image. Thus, if the environment changes, for example, objects moving in the environment, a robot is unlikely to find consistent corresponding points with one of the database images. To solve these problems, we propose a novel navigation strategy which uses fast motion estimation and a practical scene recognition scheme preparing the kidnapping problem, which is defined as the problem of re-localizing a mobile robot after it is undergone an unknown motion or visual occlusion. This algorithm is based on motion estimation by a camera to plan the next movement of a robot and an efficient outlier rejection algorithm for scene recognition. Experimental results demonstrate the capability of the vision-based autonomous navigation against dynamic environments.

  • PDF