• Title/Summary/Keyword: autonomous locomotion

Search Result 21, Processing Time 0.03 seconds

Inverse Dynamic Modeling of a Stair-Climbing Robotic Platform with Flip Locomotion (회전과 뒤집기 방식의 계단등반 로봇의 역동역학 모델링)

  • Choi, Jae Neung;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.654-661
    • /
    • 2015
  • Stairs are the most popular obstacles in buildings and factories. To enlarge the application areas of a field robotic platform, stair-climbing is very important mission. One important reason why a stair-climbing is difficult is that stairs are various in sizes. To achieve autonomous climbing of various-sized stairs, dynamic modeling is essential. In this research, an inverse dynamic modeling is performed to enable an autonomous stair climbing. Stair-climbing robotic platform with flip locomotion, named FilpBot, is analyzed. The FlipBot platform has advantages of robust stair-climbing of various sizes with constant speed, but the autonomous operation is not yet capable. Based on external constraints and the postures of the robot, inverse dynamic models are derived. The models are switched by the constraints and postures to analyze the continuous motion during stair-climbing. The constraints are changed according to the stair size, therefore the analysis results are different each other. The results of the inverse dynamic modeling are going to be used in motor design and autonomous control of the robotic platform.

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

Autonomous mobile robot yamabico and its ultrasonic range finding module

  • Song, Minho;Yuta, Shinichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.711-714
    • /
    • 1989
  • Autonomous mobile robot Yamabico and his newly developed ultrasonic range finding module(URF) are described. Yamabico is a self-contained autonomous robot for in-door environment. It has a modularized architecture, which consists of master module, ultrasonic range finding module, locomotion module, voice synthesizer module and console. Newly developed ultrasonic range finding module has a 68000 processor and Dual-port memory for communication. It controls the ultrasonic transmitters and receivers and calculate the range distances for 12-direction, simultaneously within every 60 milliseconds.

  • PDF

Locomotion Control of 4 Legged Robot Using HyperNEAT (HyperNEAT를 이용한 4족 보행 로봇의 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • The walking mobility with stability of 4 legged robots is the distinguished skills for many application areas. Planning gaits of efficient walking for quadruped robots is an important and challenging task. Especially, autonomous generation of locomotion is required to manage various robot models and environments. In this paper, we propose an adaptive locomotion control of 4 legged robot for irregular terrain using HyperNEAT. Generated locomotion is executed and analysed using ODE based Webots simulation for the 4 legged robot which is built by Bioloid.

A Stable Locomotion Control Method for an Autonomous Mobile Robot (자율 이동 로보트를 위한 안정한 주행 제어 방법)

  • Shim, Hyun-Sik;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.374-376
    • /
    • 1992
  • This paper proposes a stable locomotion control rule for non-holonomic mobile robot. Stability of the rule is proved through the use of a Liapunov function. We have two controller for locomotion control. One is velocity controller, the other is position controller. The proposed controller is position controller whose input to robot are a reference posture and reference velocities. The major objective of this paper is to propose a control rule to find a reasonable velocity command under a assumption which is velocity controller is ideal controller.

  • PDF

Research of Colonoscope Robot With Rotary Inertia Type Locomotion Mechanism (회전관성형 주행 메커니즘을 가진 내시경 로봇의 연구)

  • Lee, Jaewoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.521-526
    • /
    • 2016
  • This paper suggests a new design that makes use of rotary inertia that can allow autonomous movement of an autonomous colonoscope robot in the colon of a patient as a locomotive mechanism. As commercial colonoscopy causes a lengthy time of pain and discomfort to the patients when colonoscopy patients are reluctant to receive surgery, there is a tendency to avoid the test in the early diagnosis of colorectal cancer. To solve this problem, research has been conducted on the next generation of robotic colonoscopes that can reduce the discomfort and pain by moving autonomously within the colon of the patients. In the driving mechanism utilizing the rotational inertia, a flywheel is driven by a motor to store energy and produce rotational inertia. By the energy stored and released by the flywheel, the stick phenomenon that occurs when the robot is running in the intestine can be overcome effectively. To do this, a controller that can control the velocity of the flywheel and is robust to high frequency noise was designed and implemented. The driving mechanism using the rotational inertia presented here showed that the structure is also effective and the experiment can be run easily compared to another mechanism.

Development of Underwater-type Autonomous Marine Robot-kit (수중형 자율운항 해양로봇키트 개발)

  • Kim, Hyun-Sik;Kang, Hyung-Joo;Ham, Youn-Jae;Park, Seung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2012
  • Recently, although the need of marine robots being raised in extreme areas, the basis is very deficient. Fortunately, as the robot competition is vitalizing and the need of the robot education is increasing, it is desirable to establish the basis of the R&D and industrialization of marine robots and to train professionals through the development and diffusion of marine robot kits. However, in conventional case, there is no underwater-type autonomous marine robot kit for the marine robot competition, which has the abilities of the underwater locomotion and target detection and avoidance. To solve this problem, a marine robot kit which has the abilities of the underwater locomotion, the waterproof and the weight adjustment, is developed. To verify the performance of the developed kit, test and evaluation such as surge, pitch, yaw, obstacle avoidance is performed. The test and evaluation results show that the possibility of the real applications of the developed kit.

Autonomous Bipedal Locomotion with Evolutionary Algorithm (진화적 알고리즘을 이용한 자율적 2족 보행생성)

  • 옥수열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.277-280
    • /
    • 2004
  • In the research of biomechanical engineering, robotics and neurophysiology, to clarify the mechanism of human bipedal walking is of major interest. It serves as a basis of developing several applications such as rehabilitation tools and humanoid robots Nevertheless, because of complexity of the neuronal system that Interacts with the body dynamics system to make walking movements, much is left unknown about the details of locomotion mechanism. Researchers were looking for the optimal model of the neuronal system by trials and errors. In this paper, we applied Genetic Programming to induce the model of the nervous system automatically and showed its effectiveness by simulating a human bipedal walking with the obtained model.

  • PDF

Swimming pattern analysis of a Diving beetle for Aquatic Locomotion Applying to Articulated Underwater Robots (다관절 유영로봇에 적용하기 위한 물방개의 유영패턴 분석)

  • Kim, Hee-Joong;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.259-266
    • /
    • 2012
  • In these days, researches about underwater robots have been actively in progress for the purposes of ocean detection and resource exploration. Unlike general underwater robots such as ROV(Remotely Operated Vehicle) and AUV(Autonomous Underwater Vehicle) which have propellers, an articulated underwater robot which is called Crabster has been being developed in KORDI(Korea Ocean Research & Development Institute) with many cooperation organizations since 2010. The robot is expected to be able to walk and swim under the sea with its legs. Among many researching fields of this project, we are focusing on a swimming section. In order to find effective swimming locomotion for the robot, we approached this subject in terms of Biomimetics. As a model of optimized swimming organism in nature, diving beetles were chosen. In the paper, swimming motions of diving beetles were analyzed in viewpoint of robotics for applying them into the swimming motion of the robot. After modeling the kinematics of diving beetle through robotics engineering technique, we obtained swimming patterns of the one of living diving beetles, and then compared them with calculated optimal swimming patterns of a robot leg. As the first trial to compare the locomotion data of legs of the diving beetle with a robot leg, we have sorted two representative swimming patterns such as forwarding and turning. Experimental environment has been set up to get the motion data of diving beetles. The experimental equipment consists of a transparent aquarium and a high speed camera. Various swimming motions of diving beetles were recorded with the camera. After classifying swimming patterns of the diving beetle, we can get angular data of each joint on hind legs by image processing software, Image J. The data were applied to an optimized algorithm for swimming of a robot leg which was designed by robotics engineering technique. Through this procedure, simulated results which show trajectories of a robot leg were compared with trajectories of a leg of a diving beetle in desired directions. As a result, we confirmed considerable similarity in the result of trajectory and joint angles comparison.

Development of Balloon-based Autonomous Airborne Robot-kit (풍선기반 자율형 공중로봇키트 개발)

  • Kim, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1213-1218
    • /
    • 2013
  • Recently, although the need of marine robots such as the underwater robot, surface robot and airborne robot being raised in extreme areas, the basis is very deficient. Fortunately, as the need of the robot education is increasing, it is desirable to establish the R&D basis of marine robots and to train future talents through the development and diffusion of marine robot kits. However, in conventional case, there is no marine robot-kit based on the balloon, which has the abilities of the airborne locomotion and obstacle avoidance. To solve this problem, a balloon-based autonomous airborne robot-kit that has the ability of the obstacle avoidance with an infrared sensor, is developed. The test and evaluation results show the possibility of the real applications and the necessity of additional work.