• 제목/요약/키워드: automotive seat

검색결과 242건 처리시간 0.028초

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구 (A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering)

  • 성시명;정인룡
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.

자동차 잡음환경에서의 음성인식시스템 (Speech Recognition System in Car Noise Environment)

  • 김수훈;안종영
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권1호
    • /
    • pp.121-127
    • /
    • 2009
  • 자동차 ECU(Electronic Control Unit)는 날이 갈수록 더욱 복잡해지고 많은 기능을 요구하고 있다. 대표적으로 power windows switch, LCM(Light Control Module), mirror control system, seat memory등 운전자 편의 시스템이 개발되어 양산 중에 있다. 또한 현재 업계에서 많은 연구개발이 진행되고 있는 운전자 편의를 위한 DIS(Driver Information System)도 있다. 하지만 이러한 시스템을 운전 중 조작하게 되면 많은 위험이 따른다. 따라서 본 논문에서는 이러한 자동차 편의장치를 음성으로 조작 가능한 음성인식 시스템을 구현하였으며 자동차 잡음환경에서 인식률 향상을 위한 전처리 필터를 적용하여 양호한 인식결과 얻었다.

  • PDF

CVT system applied pulley consisting of the basic disk and rotational disk

  • Sien, Dong-Gu
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.206-214
    • /
    • 2022
  • Automobile manufacturers in each country are spurring the development of electric vehicles that use electric energy, an eco-friendly energy, as a futuristic vehicle. Electric vehicles have the advantage of no harmful gas or environmental pollution and low noise. Unlike automobiles using existing internal combustion engines using fossil fuels, electric vehicles use the electricity of batteries to cause rotational motion of motors. In the electric vehicle driven by the motor, it is indispensable to develop a controller for controlling the motor. One of the areas where automobile manufacturers are concentrating is the development of small electric vehicles as a personal transportation means. Small electric vehicles such as electric motorcycles, one-seat electric vehicles and two-seat electric vehicles are expanding the market as a means of operating throughout the city. In the domestic road conditions with many hills, it is effective to have a separate transmission system for small electric vehicles to drive smoothly. In this study, we propose a new type of continuously variable transmission(CVT) system to ensure that small electric vehicles can be driven smoothly in hilly domestic terrain. The proposed CVT system is equipped with a basic disk and a rotational disk in the driving pulley and the driven pulley, respectively, and is applied with a sloping spline to rotate the rotational disk. To commercialize the proposed CVT system, an experimental device was developed to examine the power transmission efficiency and the configuration of the CVT system was proposed.

고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가 (Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590))

  • 허철;권종완;조현덕;최성종;정우영
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구 (Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag)

  • 이일권;김영규;문학훈
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.102-106
    • /
    • 2012
  • 이 논문의 목적은 현장에서 발생되는 자동차 에어백 시스템의 고장사례를 모아 분석하고 연구하는 것이다. 첫 번째 사례에서는 에어백 시스템의 클럭 스프링과 에어 백 모듈 사이 배선 핀의 납땜부가 이탈되어, 배선 접촉불량에 의해 핀이 흔들릴 때마다 에어백의 작동불량 현상이 발생되는 것을 확인하였다. 두 번째 사례에서는 에어백 컴퓨터 내부의 단품 소자의 손상으로 인해 에어백 작동불량 현상이 발생된 것을 확인하였다. 세 번째 사례에서는 조수석 시트 벨트 프리텐셔너(pre-tensioner)의 내부 핀과 저항을 연결해 주는 납땜부 이탈로 인해 에어백 경고등이 점등된 것을 확인하였다. 네 번째 사례에서는 승용자동차가 화물자동차의 후면을 추돌하였을 때 때 범퍼는 상대편 차량보다 낮아 아래로 끼어들게 된다. 이 때 사고의 충격은 차량의 프레임부분에 전달되지 않기 때문에 충격센서가 설치된 프레임부분에 충격이 적게 전달되어 에어백이 작동하지 않은 것을 확인하였다.

자동차 실내 인화성물질과 전기과부하에 의한 화재관련 사례 연구 (A Study for Examples of Fire including with Combustible Substance and electrical overload in Automotive Inside Room)

  • 한재오;함성훈;임하영;이일권
    • 한국가스학회지
    • /
    • 제18권3호
    • /
    • pp.38-43
    • /
    • 2014
  • 이 논문은 자동차 실내의 인화성 물질과 전기적인 접촉 불량에 의한 화재사례를 분석하고 연구하는 것이다. 첫 번째 사례는 운전자가 에어컨 냄새 탈취제인 방향제를 사용 후 실내의 크래쉬 패드에 두고 내린 것이 외부의 복사열에 의해 폭발하면서 화재가 발생된 것으로 확인되었다. 두 번째 사례는 운전자가 자동차 실내에 전자기기 등을 사용하면서 전기적인 과부하가 걸려 단락현상에 의해 화재가 발생된 것으로 확인되었다. 세 번째 사례는 자동차 내부의 시트를 따뜻하게 하기 위해 열선을 설치하였다. 초기에 설치하였을 때는 화재의 위험성이 약했으나 5,000km를 운행하면서 이 열선의 내구성이 떨어지면서 순간적으로 전기적인 과부하가 발생되었고, 이 열이 시트에 옮겨 붙으면서 자동차 화재가 발생된 것으로 확인되었다. 네 번째 사례는 뒷좌석에 있던 승객이 담배를 피우던 중 완전히 소화하지 않은 상태로 둔 것이 가연성 종이에 옮겨 붙어 자동차가 전소된 것으로 확인되었다. 따라서, 실내의 인화성 물질이나 전기적인 시스템을 추가로 사용할 때는 화재가능성을 최대한 고려하고 이에 대한 세심한 대책을 강구하여야 한다.

피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석 (Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator)

  • 이진욱;민경덕
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석 (Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software)

  • 임재문;최중원;박경진
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

승객보호용 랩을 적용한 저위험성 조수석 에어백의 미국 연방 자동차안전 기준법규에 의거한 시험과 평가 (Test and Evaluation based on Standard Regulation of USA Federal Automotive Safety of Assistant Driver's Seat Airbag at Low Risk Deployment Passenger Airbag using Passenger Protection Wrap)

  • 김동은;김진형;강명창
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.61-67
    • /
    • 2016
  • The airbag is a widely accepted device for occupant protection in the automotive industry. As the injuries induced by airbag deployment have become a critical issue, revisions to Federal Motor Vehicle Safety Standard (FMVSS) 208 were required to create advanced airbags that can protect occupants of varying statures. In this paper, we developed a new low-risk deployment passenger airbag by adding the Passenger Protection Wrap (PPW). The PPW reduces the cushion impact force to the occupant in order to ensure pressure dispersion. A series of tests were conducted by using FMVSS 208 test procedures to demonstrate the proposed system. It was found that the system not only satisfied the injury criteria of FMVSS 208 but was also effective for protecting passengers of all sizes (male, small female, 3-year-old, 6-year-old).