• Title/Summary/Keyword: automobile industry

Search Result 905, Processing Time 0.027 seconds

A Study on the Thermal Behavior of Friction Stir Welding in hi 6061 Alloys (Al 6061합금의 마찰교반접합시 접합부의 열거동에 관한 연구)

  • 방한서;김흥주;고민성;김규훈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.534-537
    • /
    • 2002
  • In the various industry such as shipbuilding and automobile, etc., Al-alloys are used to reduce weight and improve economical efficiency, and they are mainly utilized in the process of Friction Stir Welding (FSW). A number of studies have been carried out on the metallurgical characteristics of friction stir welding In Al-alloys. However, research on the thermal behavior of FSW by using numerical analysis is not sufficient in the domestic and abroad. In this paper, therefore, numerical simulation was used to find out thermal behaviour of FSW by finite element method. We considered heat source that occurred by friction between tool shoulder including pin and base metal. To confirm the result of simulation, macrostructure is examined and compared after welding. The result of numerical simulation shows that Al-alloy is welded under a melting point of Al around pin by FSW.

A Study on the Weldability & Indentation Depth Evaluation of Electrochemical Galvanized Steel Sheet according to the Welding Conditions (전기아연도금 강판의 점용접성에 미치는 용접조건과 압흔깊이에 관한 연구)

  • 정영훈;허우진;백승세;권일현;양성모;유효선
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.162-164
    • /
    • 2003
  • Spot welding, a kind of electric resistance welding, has been used in many fields such as automobile, aircraft, and appliance industry. This paper is to investigate the relationship between tensile shear strength and indentation depth under various welding conditions. The tensile shear strength increases with increasing the welding current in the range of 6-l3kA. The optimum welding conditions were 200∼250kg welding force and 10∼15 cycles welding time at 9kA welding current for EZNCEN. The indentation depth for optimum welding condition was 0.6mm at 9kA welding curent and 200kg welding force, 0.17mm at 9kA welding current and 300kg welding force, 0.19mm at 9kA welding current and 10cycle, 0.17mm at 9kA welding current and 15cycle welding time, respectively.

  • PDF

The Study on Process and Optimal Design for Development of Next Generation Integrated Restraint Seat for Automobile (The Design of Lightweight Seat Frame made by the Hydroforming Process) (자동차용 차세대 통합형시트 개발을 위한 공정 및 최적화설계 기법 연구 (하이드로포밍 공법을 이용한 경량 시트프레임 설계))

  • 표창률;전병희;조명래;전한수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2000
  • The hydroforming process is rapidly gaining popularity in the sheet metal forming industry. In this study, hydroforming process is applied to the seat back frame. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Structural analyses were performed with an analysis package program named I-DEAS for the conventional and the hydroforming seat back frame. The seat back frame made by hydroforming is not only about 23 percent lightweight, but also about 20 percent high strength compared with conventional that.

  • PDF

Fatigue Strength Evaluation of Tensile-Peel Loaded Adhesively Bonded and Mechanical Pressed Joints (접착 및 기계적 프레스 접합부에서의 인장-박리 피로강도 평가)

  • Kang, Jung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • The tensile and fatigue experiments were conducted with tensile-peel specimens for investigating on strength of adhesively bonded and mechanical press joints of aluminum sheet used in the field of the automobile industry. The combining epoxy adhesive bonding and mechanical press joining exhibits an increase in joining force as a result of interaction between static forces of the two joining methods. The fatigue strength of pure adhesive joint was measured as 91% of that of the combination of adhesive bond and mechanical press joint, suggesting that the interaction between the bonding and mechanical joining was about 9%.

A Study on Infiltration Limits in Forming Process of Metal Matrix Composites by Squeeze Casting (용탕단조법에 의한 금속복합재료의 성형공정에 있어서 함침한계성에 관한 연구)

  • Kang, C.C.;Ku, G.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1751-1760
    • /
    • 1993
  • The squeeze casting process is considered as an attractive way to form the primary product of near net shape metal matrix composites for wide use in automobile industry. To understand for infiltration limit in squeeze casting processes, the SAFFIL short fiber preform of volume fraction $10%{\sim}23%$ were fabricated by vaccum pumping and speed control press, and the optimal condition for fiber preform fabrication had been experimentally obtained. The composite materials were fabricated by forced infiltration of molten metals such as Al6061, Al7075, pure Al, AC8A, and Al2024. The infiltration distance and deformation of fiber preform are observed, and tensile strength were measured from at the room temperature.

Quantitative Analysis and Mathematical Model for Spindle Vibration of the End-Milling by Design of Experiment (실험계획법을 이용한 엔드밀 가공시 주축 진동에 대한 정량적 분석 및 수학적 모형)

  • Park, Heung-Sik;Lee, Sang-Jae;Bae, Hyo-Jun;Jin, Dong-Kyu;Kim, Young-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2004
  • End-milling have been widely used in aircraft, automobile part and moulding industry. However, various working factors such as spindle speed, feed rate and depth of cut in end-milling have an effect on spindle vibration. There it is demanded the quantitative analysis of spindle vibration in order to get the optimum surface roughness. This study was carried out to analyze an influence of working factors on spindle vibration by design of Experiment. The results are shown that mathematical model of regression equation for an influence of working factors on vibration acceleration of spindle in end-milling by regression analysis is presented.

  • PDF

A Study on the Painting Characteristics of Waterborne Paint for Automotive Refinish (자동차 보수도장용 수용성 도료의 도장특성에 관한 연구)

  • Kim, Soon-Kyung;Kim, Moon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.68-75
    • /
    • 2008
  • This paper investigates the correlation between surface roughness and gloss of aluminium sheet painted waterborne paint. One customer criterion of automotive quality is the as-painted appearance of the final products. Especially, the current emphasis on control of surface roughness of sanded aluminium sheet has been prompted by the automotive industry's concern with the as-painted appearance. because the influence of such characteristics on paintability, and painted appearance is important in defining outer panel requirements for automobile. This paper is dedicated primarily to the issue of painted appearance and reviews for improvement of roughness. The conclusions are obtained as follows ; 1) Painted aluminium sheet appearance is strongly affected by surface roughness of base-metal and influenced by sand paper and sanding method. 2) The painted appearance of aluminium sheets was determined and related to surface roughness parameters, combination of sand paper.

  • PDF

Static Creep Behaviour of Super-Duralumin(Al 2024) (초 두랄루민(Al 2024)의 정적인 크리프 거동)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.22-27
    • /
    • 2004
  • Super-duralumin has widely been used as the part materials of aerospace and automobile industry because it has high specific strength and also is light. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, every creep test under four constant stress conditions have been conducted for four temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of super-duralurnin products and we have gotten the following results. First, the stress exponents showed the descending trend as the test temperatures increase. Secondly, the creep activation energy gradually decreased as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy was estimated about 6. And last, the fractographs at the creep rupture showed both the brittle fracture due to the transgranular rupture.

  • PDF

Approximate Optimization Design Considering Automotive Wheel Stress (자동차용 휠의 응력을 고려한 근사 최적 설계)

  • Lee, Hyunseok;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

Inspection of the Knuckle Bracket Holes of a Shock-Absorber using Image Processing Method (영상처리를 이용한 쇽업서버 너클 브라켓 홀 검사 방법)

  • Jeong, Kyu-Won;Ahn, Kye-Un
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.768-775
    • /
    • 2010
  • Automotive industry is a major business area in this country and it becomes more and more important. In order to maintain high quality of vehicles, every parts should be inspected. Among them the inspection job of the knuckle bracket holes of the outer tube of shock-absorber has been done manually until now. So, it takes long time and every product can not be inspected. An automatized inspection system was proposed utilizing machine vision technology, which was composed of a slit beam laser, CCD camera, image processing computer, special jig and illuminating back lights. An algorithm which could process images of the laser and bracket holes, then gave the position, radius, roundness of the holes, was developed. This system was applied for the good and no good products and the performance was confirmed.