• Title/Summary/Keyword: automatic steering control

Search Result 76, Processing Time 0.02 seconds

A Wheeled Inverted Pendulum System with an Automatic Standing Arm (자동기립이 가능한 차륜형 역진자 시스템 개발)

  • Lee, Se-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.578-584
    • /
    • 2015
  • In this study a moving platform for a mobile robot that can be traveling with a full automatic standing arm was developed. Conventional mobile robots generally may equip 4 wheels or 3 wheels with a caster wheel or independent driven wheels and have good statistic stability. When a mobile robot travels on a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it is sometimes physically impossible for the robot to go through the crossroad because of the size limit. The upright running mobile robot changes its posture to the upright posture which has a small planar area and is able to go through the crossroad. The upright control which was manually performed step by step before such as sequences of uprighting (returning), checking, and balancing, is now automated.

A Basic Study on Connected Ship Navigation System

  • Choi, Wonjin;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.136-143
    • /
    • 2020
  • Maritime autonomous surface ships (MASS) has been developed over the years. But, there are many unresolved problems. To overcome these problems, this study proposes connected ship navigation system. The system comprises a slave ship and a master ship that leads the slave ship. To implement this system, communication network, route planning algorithms, and controllers are designed. The communication network is built using the transmission control protocol/Internet protocol (TCP/IP) socket communication method to exchange data between ships. The route planning algorithms calculate the course and distance of the slave ship using the middle latitude sailing method. Nomoto model is used as the mathematical model of the slave ship maneuvering motion. Then, the autoregressive with exogenous variables (ARX) model is used to estimate the parameters of Nomoto model. Based on the above model, the automatic steering controller is designed using a proportional-derivative (PD) control. Also, the speed controller is designed for the slave ship to maintain constant distance from the master ship. Sea experiments are conducted to verify the proposed system with two remodeled boats.

Analysis of Rotational Motion of Skid Steering Mobile Robot using Marker and Camera (마커와 카메라를 이용한 스키드 구동 이동 로봇의 회전 운동 분석)

  • Ha, Jong-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 2016
  • This paper deals with analysis of the characteristics of mobile robot's motion by automatic detection of markers on a robot using a camera. Analysis of motion behaviors according to parameters is important in developing control algorithm for robot operation or autonomous navigation. For this purpose, we use four chessboard patterns on the robot. Their location on the robot is adjusted to be on single plane. Homography is used to compute the actual amount of movement of the robot. Presented method is tested using P3-AT robot and it gives reliable results.

Unmanned Driving of Robotic Vehicle Using Magnetic Maker (자계표식을 이용한 로봇형 차량의 무인주행)

  • Im, Dae-Yeong;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.775-780
    • /
    • 2008
  • In this paper, unmanned driving of robotic vehicle using magnetic marker is proposed. One of the most important component of autonomous vehicle is to detect the position of a magnetic marker on the road. In order to calculate the precise position of a magnet embedded on the road, the relation of magnetic field and a sensor is analyzed, and a new position sensing system using arrayed magnetic sensor is proposed. Also, the steering control system using a stepping motor is developed for driving by automatic mode as well as manual mode. For the verification of usability, the developed robotic vehicle is tested on magnetic road.

A Development of Integrated Control System for Platform Equipments of Unmanned Surface Vehicle (USV) (무인수상정 플랫폼 장비의 통합 제어 시스템 개발)

  • Hwang, Hun-Gyu;Kim, Hyun-Woo;Kim, Bae-Sung;Woo, Yun-Tae;Shin, Il-Sik;Shin, Ji-Hwan;Lee, Young-Jin;Choi, Byung-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1611-1618
    • /
    • 2017
  • Recently, the development for USV-related technologies are actively growing up in military domain. The USV (unmanned surface vehicle) conducts various missions for national defense at maritime environment. For succeed the missions, the USV essentially needs an automatic and remote control platform which includes propulsion system, steering system, control system, power system and so on. In this paper, we developed an integrated control system for the platform equipments and verified effectiveness of the developed system. To do this, we designed a system architecture and implemented a main control system that processes and controls platform equipments by received command. Also we developed components of designed architecture such as engine control device, water-jet control device and power control device. For test and verify the developed system, we designed and made a test-bed of engine and water-jet with related parts, and proceeded a basin test for verifying the developed system based on the test-bed.

Development for the Azimuth Measurement Algorithm using Multi Sensor Fusion Method (멀티센서 퓨전 기법을 활용한 방위 측정 알고리즘의 설계)

  • Kim, Tae-Yeong;Kim, Young-Chul;Song, Moon-Kyou;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.865-871
    • /
    • 2011
  • Presently, the location and direction information are certainly needed for the autonomous vehicle of the ship. Among them, the direction information is a essential elements to automatic steering system. And the gyro-compass, the magnetic-compass and the GPS compass are the sensor indicating the direction. The gyro-compasses are mainly used in the large-sized ship of the GMDSS(Global Maritime Distress & Safety System). The precision and the reliability of the gyro-compasses are excellent but big volume and high price are disadvantage. The magnetic-compass has relatively fine precision and inexpensive price. However, the disadvantage is in the influence by the magnetism object including the steel structure of a ship, and etc. In the case of the GPS compass, the true north is indicated according to the change of the location information but in case of the minimum number of satellites or stopping of a ship or exercise in the error range, the exact direction cannot be obtained. In this paper, the performance of the GPS compass was improved by using the least-square curve fitting method for the mutual trade off of the angle sensor. The algorithm which improves the precision of an azimuth by applying the weighted value according to the size of covariance error was proposed with GPS-compass and magnetic compass. The characteristic and the performance of the proposed algorithm were analyzed and verified through experimentation. The applicability of the proposed algorithm was shown through the experimental result.