DOI QR코드

DOI QR Code

마커와 카메라를 이용한 스키드 구동 이동 로봇의 회전 운동 분석

Analysis of Rotational Motion of Skid Steering Mobile Robot using Marker and Camera

  • 하종은 (서울과학기술대학교 기계.자동차공학과)
  • Ha, Jong-Eun (Dept. of Mechanical & Automotive Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.12.04
  • 심사 : 2016.02.24
  • 발행 : 2016.02.25

초록

본 논문에서는 이동 로봇에 마커를 부착하여 이를 카메라를 통해 자동으로 추출하여 이동 로봇의 운동 특성을 분석하는 방법에 대해 다루도록 한다. 이동 로봇의 구동을 위한 제어 알고리듬의 개발이나 자율 이동 관련 알고리듬 개발시 인자값에 따른 운동 특성 분석은 중요한 부분이다. 이의 분석을 위해 본 논문에서는 네 개의 체스보드 형태의 마커를 이동 로봇에 부착하여 사용하도록 한다. 이들 네 개의 마커들은 동일 평면에 존재하도록 배치하도록 한다. 평면 호모그라피를 이용하여 로봇의 실제 이동량을 계산하도록 한다. 제시된 방법은 P3-AT 로봇을 이용하여 실험을 수행하였으며 안정적인 운동 분석이 가능하였다.

This paper deals with analysis of the characteristics of mobile robot's motion by automatic detection of markers on a robot using a camera. Analysis of motion behaviors according to parameters is important in developing control algorithm for robot operation or autonomous navigation. For this purpose, we use four chessboard patterns on the robot. Their location on the robot is adjusted to be on single plane. Homography is used to compute the actual amount of movement of the robot. Presented method is tested using P3-AT robot and it gives reliable results.

키워드

참고문헌

  1. J. Kang, W. Kim, J. Lee, and K. Yi, "Skid steering-based control of a robotic vehicle with six in-wheel drives," Proc. IMechE, Part D: J. of Automobile Engineering, vol. 224, no. 11, 2010, pp. 1369-1391. https://doi.org/10.1243/09544070JAUTO1405
  2. S. Kang, J. Huh, S. Lee, and T. Jee, "Study on vehicle motion analysis and control for skid steering UGVs with articulating arms," J. of the Korean Institute of Military Science and Technology, vol. 14, no. 5, 2011, pp. 747-752. https://doi.org/10.9766/KIMST.2011.14.5.747
  3. H. Peng, "Vehicle lateral control for highway automation," Ph.D. Thesis, University of California at Berkely, 1992.
  4. J. Shin and S. Joo, "NN-based Adaptive Control for a Skid-type Autonomous Unmanned Ground Vehicle," J. of Institute of Control, Robotics and Systems, vol. 20, no. 12, 2014, pp. 1278-1283. https://doi.org/10.5302/J.ICROS.2014.14.8023
  5. H.-H Lee and W. Cho, "Development of Holonomic Drive Technology with Variable Manipulability," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 1, 2013, pp. 471-479. https://doi.org/10.13067/JKIECS.2013.8.3.471
  6. Y.-K. Kwon, "A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 4, 2010, pp. 149-157.
  7. Y.-Y. Kim and M.-H. Jeong, "Simultaneous Mobile Robot Calibration using Iterative Linear Method," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 7, 2015, pp. 793-800. https://doi.org/10.13067/JKIECS.2015.10.7.793
  8. M. Fiala, "Comparing ARTag and ARToolkit Plus Fiducial Maker System," In IEEE Int. Workshop on Haptic Audio Visual Environments and their Applications, Ottawa, Ont., Canda, Oct. 2005, pp. 148-153.
  9. D. Claus and A. W. Fitzgibbon, "Reliable automatic calibration of a marker-based position tracking system," In IEEE Workshop on Applications of Computer Vision, Breckenridge, CO, Jan. 2005.
  10. M. Fiala, "Designing highly reliable fiducial markers," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 7, 2010, pp. 1317-1324. https://doi.org/10.1109/TPAMI.2009.146
  11. J.E. Ha, "Automatic detection of chessboard and its applications," Optical Engineering, vol. 48, no. 6, 2009.
  12. R. Hartley and A. Zisserman, Multiple View Geometry, Cambridge: Cambridge University Press, 2000.
  13. B. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," In Int. Joint. Conf. on Artificial Intelligence, Vancouver, Canada, Aug. 1981, pp. 674-679.