• Title/Summary/Keyword: automatic segmentation

Search Result 512, Processing Time 0.026 seconds

The Error Pattern Analysis of the HMM-Based Automatic Phoneme Segmentation (HMM기반 자동음소분할기의 음소분할 오류 유형 분석)

  • Kim Min-Je;Lee Jung-Chul;Kim Jong-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.213-221
    • /
    • 2006
  • Phone segmentation of speech waveform is especially important for concatenative text to speech synthesis which uses segmented corpora for the construction of synthetic units. because the quality of synthesized speech depends critically on the accuracy of the segmentation. In the beginning. the phone segmentation was manually performed. but it brings the huge effort and the large time delay. HMM-based approaches adopted from automatic speech recognition are most widely used for automatic segmentation in speech synthesis, providing a consistent and accurate phone labeling scheme. Even the HMM-based approach has been successful, it may locate a phone boundary at a different position than expected. In this paper. we categorized adjacent phoneme pairs and analyzed the mismatches between hand-labeled transcriptions and HMM-based labels. Then we described the dominant error patterns that must be improved for the speech synthesis. For the experiment. hand labeled standard Korean speech DB from ETRI was used as a reference DB. Time difference larger than 20ms between hand-labeled phoneme boundary and auto-aligned boundary is treated as an automatic segmentation error. Our experimental results from female speaker revealed that plosive-vowel, affricate-vowel and vowel-liquid pairs showed high accuracies, 99%, 99.5% and 99% respectively. But stop-nasal, stop-liquid and nasal-liquid pairs showed very low accuracies, 45%, 50% and 55%. And these from male speaker revealed similar tendency.

Effective segmentation of non-rigid object in a still picture and video sequences (정지영상/동영상에서 non-rigid object의 효율적인 영역 분할 방식에 관한 연구)

  • Lee, In-Jae;Kim, Yong-Ho;Kim, Jung-Gyu;Lee, Myeong-Ho;An, Chi-Deuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.17-31
    • /
    • 2002
  • The new MPEG-4 video coding standard enables content-based functionalities. Image segmentation is an indispensable process for it. This paper addresses an effective segmentation of non-rigid objects. Non-rigid objects are deformable objects with fuzzy, blurred and indefinite boundaries. So it is difficult to segment deformable objects precisely. In order to solve this problem, we propose an effective segmentation of non-rigid objects using watershed algorithms in still pictures. And we propose an automatic segmentation through intra-frame and inter-frame segmentation process in video sequences. Automatic segmentation preforms boundary-based and region-based segmentation to extract precise object boundaries.

Locally Adaptive Bi-level Image Segmentation Technique (국부 적응 2 진 화상 영역화 기법)

  • Jung, Gyoo-Sung;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1367-1370
    • /
    • 1987
  • This paper describes a new automatic bi-level image segmentation algorithm which determines local thresholds by applying a locally adaptive edge detection technique to a variable threshold selection method. Computer simulations show that the performance of the proposed algorithm is more robust than those of automatic global thresholding methods.

  • PDF

Airborne LiDAR Simulation Data Generation of Complex Polyhedral Buildings and Automatic Modeling (다양한 건물의 항공 라이다 시뮬레이션 데이터 생성과 자동 모델링)

  • Kim, Jung-Hyun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.235-238
    • /
    • 2010
  • Since the mid 1990s airborne LiDAR data have been widely used, automation of building modeling is getting a central issue. LiDAR data processing for building modeling is involved with extracting surface patch elements by segmentation and surface fitting with optimal mathematical functions. In this study, simulation LiDAR data were generated with complex polyhedral roofs of buildings and an automatic modeling approach was proposed.

  • PDF

MOTION DETECTION USING CURVATURE MAP AND TWO-STEP BIMODAL SEGMENTATION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.247-256
    • /
    • 2009
  • In this paper, a motion detection algorithm which works well in low illumination environment is proposed. By using the level set based bimodal motion segmentation, the algorithm obtains an automatic segmentation of the motion region and the spurious regions due to the large CCD noise in low illumination environment are removed effectively.

  • PDF

Automatic Segmentation of Cellular Images for High-Throughput Genome-Wide RNA Interference Screening (고속 Genome-Wide RNA 간섭 스크리닝을 위한 세포영상의 자동 분할)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2010
  • In recent years, high-throughput genome-wide RNA interference screening is emerging as an essential tool to biologists in understanding complex cellular processes. The manual analysis of the large number of images produced in each study spends much time and the labor. Hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. However, those factors such as the region overlapping, a variety of shapes, and non-uniform local characteristics of cellular images become obstacles to efficient cell segmentation. To avoid the problem, a new watershed-based cell segmentation algorithm using a localized segmentation method and a feature vector is proposed in this paper. Localized approach in segmentation resolves the problems caused by a variety of shapes and non-uniform characteristics. In addition, the poor performance of segmentation in overlapped regions can be improved by taking advantage of a feature vector whose component features complement each other. Simulation results show that the proposed method improves the segmentation performance compared to the method in Cellprofiler.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

Deep Learning-Based Lumen and Vessel Segmentation of Intravascular Ultrasound Images in Coronary Artery Disease

  • Gyu-Jun Jeong;Gaeun Lee;June-Goo Lee;Soo-Jin Kang
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians' decision-making by real-time application in the catheterization laboratory.

Automatic Moving Object Segmentation using Robust Edge Linking for Content-based Coding (내용 기반 코딩을 위한 강력한 에지 연결에 의한 움직임 객체 자동 분할)

  • 김준기;이호석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.305-320
    • /
    • 2004
  • Moving object segmentation is a fundamental function for content-based application. Moving object edges are produced by matching the detected moving edges with the current frame edges. But we can often experience the object edge disconnectedness due to coincidence of similarity between the object and background colors or the decrease of movement of moving object. The edge disconnectedness is a serious problem because it degrades the object visual quality so conspicuously That it sometimes makes it inadequate to perform content-based coding. We have solved this problem by developing a robust and comprehensive edge linking algorithm. And we also developed an automatic moving object segmentation algorithm. These algorithms can produce the completely linked moving object edge boundary and the accurate moving object segmentation. These algorithms can process CIF 30 frames/sec in a PC. These algorithms can be used for the MPEG-4 content-based coding.