• Title/Summary/Keyword: automated container terminal

Search Result 148, Processing Time 0.025 seconds

Finding Subjects for Automated Container Terminal Development by Systems Approach (시스템적 접근에 의한 자동화컨테이너터미널 개발 과제 도출)

  • 박창호;노홍승;정의균
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.243-250
    • /
    • 1998
  • This study is to find subjects for the Automated Container Terminal(ACT) development and container terminal system. Also we analyze the present condition of the container terminal system in Pusan port and its automation level by systems approach. And this paper aims at evaluating on the priority of R&D investment until the beginning of the second stage of New Pusan Port Project(2006). In this process we have considered 8 evaluation indexes(cost, labor, area, time, volume, reliability. safety, convenience) to analyze 6 subsystems. The priority of R&D until target year by sub-systems is as follow: 1. Cargo Handing System, 2. Transfer System, 3. Port Entry System, 4. Storage System (Distribution & Manufacturing System included), 5.Inland Transport System, 6.Port Management & Information System.

  • PDF

A study on efficient operation method of handling equipments in automated container terminals (자동화 컨테이너터미널에서 운송장비의 효율적인 운영방안)

  • 이상완;최형림;박남규;박병주;권해경;유동호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.63-70
    • /
    • 2002
  • The main subject to become a hub pen is automation The automated container terminal has already operated in advanced pons and it bas been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to productivity of automated container terminal. This study suggests the moat optimal method of equipment operation in order to minimize loading time using each three types of effective AT operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real tine. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and the number of AGVs).

  • PDF

Optimized Design for Yard Operating System Layout of Automated Container Terminal (자동화항만의 야드 운영시스템 레이아웃 설계)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.101-108
    • /
    • 2003
  • Construction of automated terminal it urgently demanded to gain the foundation of hub-port in north east Asia. Therefore we suggest an adequate operating system layout of automated terminal in Korea. In this paper the aim of automated terminal operating system is satisfied. four basic models are divided according to moving course of export and import cargo of each automated equipments, several input data are changed and analyzed dynamically by Trial and Error method, and then an optimized operating system model is selected, and designed for yard operating system layout on the basis of the selected model. Particularly, the productivity of automated port is up to the kind of automated equipments. However, because expense and present work process must be considered actually. In order to prevent confusion of the work, the method to optimize the present work and substitute prevent equipments and automated equipments was designed. It is a premise that ail the yard equipments described in this paper must be automatic except quay crane.

Simulation Model for Transport Vehicle on Automated Container Terminal (자동화 컨테이너터미널의 이송장비 시뮬레이션 모델)

  • Yang Chang Ho;Choe Yong Seok;Ha Tae Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1165-1170
    • /
    • 2003
  • The objective of this study is to develop the simulation model of transport vehicle to analyze the required number of transport vehicle and to design the traffic pattern at automated container terminal. To model the transport vehicle, we defined the vehicle model and the traffic model using the state transition model of transport vehicle. An application of a simulation to simulate an automated container terminal with perpendicular layout is developed and described. From the results of simulation experiment, we obtained the vehicle speed and the number of vehicle under given productivity of container cranes, and analyzed the saving effect by cycle time.

  • PDF

Analysis of Combined Productivity at Automated Container Terminal Using Simulation (시뮬레이션을 이용한 자동화 컨테이너터미널의 결합 생산성 분석)

  • Ha, Tae-Yeong;Choe, Yong-Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.656-659
    • /
    • 2004
  • The objective of this paper is to analyze the combined productivity at automated container terminal. We present a simulation model for transport vehicle that perform the container transportation between apron and yard with a perpendicular yard layout. Usually, the efficiency of container terminal is evaluated by productivity of container cranes at apron, and though there are enough support of transport vehicles and yard cranes, can improve the productivity of container cranes. Especially, transport vehicle is very important factor in productivity of container cranes and has variable work productivity according to loading and unloading situation. Therefore, a method that can estimate combined productivity of equipment is required. We performed various simulation experiment and analyzed combined productivity to estimate the required number of equipment.

  • PDF

System Dynamics Modeling for Improving the Competitiveness of a Container Terminal (SD 기법을 활용한 컨테이너터미널 경쟁력 강화 모델 개발)

  • Choi, Hyung-Rim;Park, Byung-Joo;Yoo, Dong-Ho
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2006
  • A container terminal should concentrate on efficient terminal operation in the long view and analyze an effect through introduction of hi-technology, automated equipments and intelligent information system, when they want to improve their reliability and competitive power in intense global competition. To do this, first this study finds out factors which affect competitive power of a container terminal, and relation between them. And then we used System Dynamics method to analyze an effect according to a value fluctuation of the factors in the long term.

  • PDF

Architectural Design of Terminal Operating System for a Container Terminal Based on a New Concept

  • Singgih, Ivan Kristianto;Jin, Xuefeng;Hong, Soondo;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.278-288
    • /
    • 2016
  • Automation ensures accurate and well-organized container transportation in container terminals. This paper addresses operational issues such as equipment scheduling and the coordination between various pieces of equipment in a rail-based automated container terminal. Containers are relayed using multiple types of equipment from road trucks to a vessel and vice versa. Therefore, handshaking is required during a container transfer between different pieces of equipment. Synchronization between the schedules of all the equipment is important to reduce equipment waiting times and the time required for transporting containers, which results in a short turnaround time for a vessel. This paper proposes an integrated control system with the objective of synchronizing the operations of different types of equipment, provides a list of decisions to be made by the control module of each type of equipment, and shows all the required information transfers between control modules. A scheme for the integrated scheduling of multiple types of equipment is proposed. The decisions made by each control module in a real-time fashion are listed with detailed explanations, and the information transfer between managers in a real-time situation at the proposed terminal is described.

Decision Support System for Efficient Ship Planning of Container Terminals (효율적인 컨테이너 터미널 선적 계획을 위한 의사결정지원시스템)

  • 신재영;곽규석;남기찬
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.255-266
    • /
    • 1999
  • The purpose of this paper is to describe the design of the decision support system for container terminal ship planning and to introduce the implemented system. The ship planning in container terminals consists of three major decision processes -the working schedule of gantry cranes the discharging sequence of inbound containers the loading position and sequence of outbound containers. For making these decision the proposed system can provide two ship planning modes the interactive planning mode with user-friendly GUI and the automated planning made. To implement the automated planning routine we acquired the planning rules from the expert planner in container terminals and developed an expert system based on the rules. Finally we evaluated the system developed and the potential for commercialization by using container terminal data.

  • PDF

Modelling and Accurate Tracking Controller Design of A Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구)

  • Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

Modelling and Accurate Tracking Control of a Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어에 관한 연구)

  • Choi, Moon-Seok;Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed based on two-degree-of-freedom (2DOF) servosystem design.

  • PDF