• Title/Summary/Keyword: autogenous expansion

Search Result 35, Processing Time 0.031 seconds

Autogenous Expansion Models of Dam Concrete containing MgO (MgO를 혼입한 댐 콘크리트의 자기팽창 모델)

  • Choi, Seul-Woo;Oh, Sang-Hyuk;Lee, Kwang-Myong;Jang, Bong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.275-276
    • /
    • 2010
  • In this study, using experimental results on the autogenous expansion of concrete containing MgO, autogenous expansion model which considers water-binder ratio, amount of MgO and curing temperature was suggested. The results predicted by autogenous expansion model agreed well with experiment results.

  • PDF

Evaluation of Thermal Expansion Coefficient and Autogenous Shrinkage Properties of High Strength Mass Concrete Using Retarder AgentBusiness (응결지연제를 사용한 고강도 매스 콘크리트의 열팽창계수 및 자기수축 특성 평가)

  • Shin, Kyoung-Su;Koo, Kyung-Mo;Lee, Eui-Bae;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.73-76
    • /
    • 2009
  • Autogenous shrinkage of high-strength mass concrete is affected high temperature history. So to evaluate autogenous shrinkage of high-strength mass concrete accurately, thermal expansion in it should be removed. In this study, compensated autogenous shrinkage was calculated after gathering thermal expansion coefficient at early age experimentally. As a result of the study. Autogenous shrinkage of mass specimen (300 ${\times}$ 300 ${\times}$ 300mm) was remarkably higher than it of standard specimen (100 ${\times}$ 100 ${\times}$ 400mm). So it was found that compensation on thermal expansion should in evaluating autogenous shrinkage of high-strength mass concrete. And this study shows results on opc and similar own contraction, if used retarder.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

An Influence of W/B and Curing Temperature on Autogenous Expansion of MgO Concrete (물-결합재비(W/B)와 양생온도가 MgO혼입 콘크리트의 자기팽창 변화에 미치는 영향)

  • Jang, Bong-Seok;Kwon, Yong-Gil;Lee, Kwang-Myong;Choi, Seul-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.293-294
    • /
    • 2010
  • In this study, it was analyzed that autogenous expansion of MgO concrete was affected by W/B and curing temperature. Autogenous expansion test was performed for MgO concrete, which is mixed MgO of 0%, 5% of cement weight. With autogenous expansion based on long-term time variation was measured, it was observed an influence with W/B and curing temperature.

  • PDF

Horizontal Ridge Augmentation using Ridge Expansion and Autogenous Tooth Bone Graft: A Case Report (치조능확장술과 자가치아골이식술을 이용한 치조능 수평증대술: 증례보고)

  • Kim, Young-Kyun;Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2011
  • Implants were placed after performing ridge expansion by inserting screws of gradually increasing thickness. Favorable clinical outcome was obtained. During surgery, buccal cortical plate fracture did not occur. Autogenous tooth bone graft material was grafted around the implant dehiscence defects and over the buccal cortical plate. The method involving the insertion of screws for ridge expansion is a successful and predictable technique for implant placement in narrow alveolar bone. Autogenous tooth bone graft material can be used for ridge augmentation and GBR.

A Fundamental Study on Physical Properties of Ultra High-Strength Concrete using Expansion Agent (팽창제를 사용한 초고강도 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Han, Da-hee;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.85-88
    • /
    • 2008
  • As super-high-strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super-high-strength concrete. Accordingly, the present study prepared super-high-strength concrete with design strength of over 100MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super-high-strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super-high-strength concrete.

  • PDF

Residual Stresses Analysis due to Volumetric Changes in Long-term Autogenous Expansive Concrete (장기팽창성 콘크리트의 체적변화에 의한 잔류응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok;Oh, Byung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.617-625
    • /
    • 2009
  • This study is devoted to the problems of thermal and autogenous expansion stresses in order to avoid cracking using chemically prestressing method. The chemical prestress can be induced by autogenous expansion characteristics of MgO concrete made in specific burning temperature. The volume change induced cracking has great influence on the long-term durability and serviceability. To evaluate risk of cracking, the computer programs for analysis of thermal and autogenous expansion stresses were developed. In these 3-D finite element procedures, long-term autogenous expansive deformation is modeled and its resultant stress is calculated and then verified by comparison with manual calculation results. In this study, the stress development is related to thermal and autogenous expansive deformation. Using the developed program, residual stresses of MgO concrete were compared and analysed in the example From the numerical results it is found that long-term, and temperature dependent expansive concrete with light-burnt MgO is most effective in controlling the risk of cracking of mass concrete because it has high temperature for long period. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and autogenous expansion stresses in mass concrete structures with lightly burnt MgO.

Autogenous Expansion Characteristics of Dam Concrete containing MgO (MgO를 혼입한 댐 콘크리트의 자기팽창 특성)

  • Jang, Bong-Seok;Lee, Kwang-Myong;Choi, Seul-Woo;Choi, Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.379-380
    • /
    • 2009
  • In this study, autogenous expansion of concrete containing MgO was measured and compared with that of concrete with no MgO. It is found from the test results that the amount of MgO and curing temperature strongly influence the autogenous expansion of dam concrete with compressive strength of 12 MPa.

  • PDF

An Experimental Study on Charateristics of Autogenous Shrinkage of HPFRCC considering Early Age Coefficient of Thermal Expansion (초기재령에서 열팽창계수를 고려한 고성능 섬유보강 시멘트 복합체의 자기수축 특성에 관한 실험적 연구)

  • Park, Jung-Jun;Moon, Jae-Heum;Park, Gi-Joon;Lee, Jang-Hwa;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3602-3609
    • /
    • 2015
  • HPFRCC is characterized by a very low water-to-binder ratio which induce extremely large autogenous shrinkage at early age. The restriction of such autogenous shrinkage through the use of forms and reinforcing bars will increase substantially the risk of excessive residual stresses and shrinkage cracking. The exact understanding of the shrinkage behavior and studies on solutions to reduce shrinkage should be imperatively undertaken for further application of HPFRCC to real structures. Therefore, this paper investigated the mechanical properties of HPFRCC with respect to the eventual introduction of expansive admixture(EA) and shrinkage reducing agent (SRA) in the mixture. Autogenous shrinkage test was conducted considering the coefficient of thermal expansion (CTE) measured at early age so as to examine the effects of EA and SRA on the autogenous shrinkage behavior of HPFRCC.

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Retarder Contents (지연제 함량 변화에 따른 초속경 라텍스개질 콘크리트(VES-LMC)의 자기수축)

  • Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-194
    • /
    • 2009
  • The autogenous shrinkage of high-performance concrete, including very-early strength latex-modified concrete(VES-LMC), is generally bigger than that of normal strength concrete because of the low water/cement ratio, high binder contents, and usage of superplasticizer. Mix. proportion of VES-LMC has low water/cement ratio(0.38), high cement content(390kg/m$^3$), and aid of latex(15% of cement weight). Thus, these factors of VES-LMC, rapid water self-dissipation and evaporation within 3 hours of concrete placement would increase the autogenous shrinkage. The purpose of this study was to evaluate the early-age shrinkage, thermal deformation and autogenous shrinkages of VES-LMC with retarder contents(retarder solids-cement ratio, by weight) using to secure working time in field. The experimental results showed that retarder contents do not affect of the maximum hydration temperature. Early-age expansion of VES-LMC was mostly caused by thermal expansion and partly by autogenous expansion. The autogenous shrinkage is decreased by increasing the retarder contents within this study. On the other hand, the usage of retarder should be decided carefully considering the field conditions because an excessive usage of retarder can cause handful early-age expansion.

  • PDF