MgO를 혼입한 댐 콘크리트의 자기팽창 모델

Autogenous Expansion Models of Dam Concrete containing MgO

최 슬 우*

오 상 혁**

이 광 명***

장 봉 석****

Choi, Seul Woo

Oh, Sang Hvuk

Lee, Kwang Myong

Jang, Bong Seok

ABSTRACT

In this study, using experimental results on the autogenous expansion of concrete containing MgO, autogenous expansion model which considers water-binder ratio, amount of MgO and curing temperature was suggested. The results predicted by autogenous expansion model agreed well with experiment results.

요 약

본 연구에서는 MgO를 혼입한 콘크리트의 자기팽창 실험결과를 이용하여 물-결합재 비, MgO 첨 가량, 양생온도 등의 영향인자를 고려한 자기팽창 모델을 제안하였으며, 모델 예측 결과가 실험 결 과를 잘 일치하는 것을 확인하였다.

1. 서 론

850~1,000 ℃의 온도로 저온 소성한 MgO의 팽창성은 매스 콘크리트의 온도가 떨어질 때의 수 축을 거의 상쇄할 수 있으며, 댐 건설에서 온도수축으로 생길 수 있는 균열을 최소화하고 온도 제 어를 단순화시키는 효과를 기대할 수 있다.1) 본 연구에서는 대표적인 매스콘크리트인 댐 콘크리트 에 시멘트 중량비 3,5% 수준으로 MgO를 혼입하여 수행한 자기팽창실험 결과를 바탕으로 자기팽 창 예측 모델을 제안하였다.²

2. 자기팽창 예측 모델

본 모델은 물-결합재 비, MgO 첨가량, 양생온도 등의 영향인자를 고려하였고, 기발표된 수학적 자기팽창 모델을 참고하였다.3)

$$A(t) = k_1 \cdot k_2 \cdot k_3 \cdot A_o(t)$$

여기서, A(t) : MgO 콘크리트의 자기팽창량, k_1 : W/B에 대한 영향 계수,

 k_2 : MgO 첨가량에 대한 영향 계수, k_3 : 양생온도에 대한 영향 계수,

 $A_0(t) = \frac{t}{a+ht}$: 자기팽창 기본식 (a,b : W/B에 따른 상수, t : 재령)이다.

표 1. 영향 계수

k_1	W/B = 50%	0.023		MgO = 0%	25	k_3	20℃	0.58
	W/B = 70%	0.012	k_2	MgO = 3%	40		30℃	1
				MgO = 5%	60		40℃	1.86

^{*} 정회원, 성균관대학교, 건설환경시스템공학과, 박사과정

^{**} 정회원, 성균관대학교, 건설환경시스템공학과, 석사과정

^{***} 정회원, 성균관대학교, 건설환경시스템공학과, 교수

^{****} 정회원, 한국수자원공사 K-water연구원 책임연구원

콘크리트의 수화 반응 및 초결 시간은 물-결합재비에 의해 결정되므로 W/B에 따라 각각 다른 상수를 이용하여 발현 속도 계수를 구하였다. 또한 수화 반응 및 초결 시간에 대한 양생온도의 영향은 식이 복잡해지지 않도록 MgO 콘크리트 체적변형 기본식에 반영하지 않고, 앞서 제시한 양생온도에 대한 영향계수로 전체 모델에 반영되도록 하였다.

표 2. MgO 콘크리트 팽창 기본식의 상수항

	W/B=50%	W/B=70%
а	400	7.5
b	150	6.5

본 연구에서 제안한 모델식의 예측값을 측정한 W/B=50, 70%의 길이 변화 데이터와 비교하여 그림 1에 나타내었다. 그림에서 보면 W/B=70%이고 양생온도 40℃인 경우를 제외하고 본 연구에서 제안한 모델식에 의한 예측값과 물-결합재비와 양생온도, MgO 치환율에 따른 자기 팽창 변화가 잘 일치함을 알 수 있다.

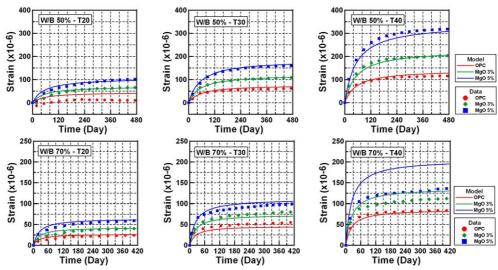


그림 1. 자기팽창 예측 모델과 실험값 비교

3. 결 론

본 연구에서 제안한 모델식은 가장 기본적인 형태의 모델식이라 할 수 있다. 따라서 추후 연구를 통해 다양한 배합 조건 및 양생 조건에 따른 MgO 콘크리트의 팽창 데이터가 확보된다면 더욱 정밀하고 신뢰도 높은 모델을 제안할 수 있을 것이라 사료된다.

감사의 글

본 연구는 국토해양부 건설기술혁신사업(09기술혁신F03)의 연구비 지원에 의해 수행되었습니다. 이에 감사드립니다.

참고문헌

- Chingjiang Du, "A Review of Magnesium Oxide in Concrete", Concrete International, Vol. 27, 2005
- 2. 장봉석, 최슬우, 오상혁, 이광명, "MgO 콘크리트의 자기팽창에 관한 실험적 연구", 대한토목학회 2009년도 정기 학술대회 논문집, pp. 433-436, 2009.
- 3. 차수원, 장봉석, 배성근, 정우성, "온도 의존적 장기팽창성 콘크리트의 해석모델", 한국콘크리트학회 2009년 봄 학술대회 논문집, pp. 373-374, 2009.