• 제목/요약/키워드: autoclaved aerated concrete (AAC)

검색결과 11건 처리시간 0.027초

건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가 (Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings)

  • 김영호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권3호
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.

Applicability of Stone Powder Sludge as a Substitute Material for Quartz Sand in Autoclaved Aerated Concrete

  • Kim, Jin-Man;Choi, Se-Jin;Jeong, Ji-Yong
    • 한국건축시공학회지
    • /
    • 제17권1호
    • /
    • pp.111-117
    • /
    • 2017
  • Stone powder sludge is a byproduct of the crushed aggregate industry, and most of it is dumped with soil in landfills. The disposal of stone powder sludge presents a major environmental problem. This paper investigates the effects of stone powder sludge on the fluidity, density, strength and micro-structure properties of AAC(autoclaved aerated concrete) samples. Stone powder sludge was obtained from a crushed aggregate factory in order to investigate its applicability as a substitute for quartz sand in AAC. To determine the properties of the AAC samples produced with stone powder sludge, specimens containing different foam ratios were produced. Flow value, density, compressive strength, tensile strength and flexural strength of the samples were tested, and X-ray diffraction (XRD) was performed. The test results indicated that the compressive strength of AAC specimens (F120) with stone powder sludge was higher than that of AAC specimens (Q120) with quartz sand for same foam ratio of 120%. For all XRD diagrams, a higher number of tobermorite peaks was shown for the F120 sample than for the Q120 sample, which may explain the slightly higher strength gain in the F120 sample.

Simulation of brittle fracture of autoclaved aerated concrete

  • Kadashevich, I.;Stoyan, D.
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.39-51
    • /
    • 2010
  • The system of pores of autoclaved aerated concrete (AAC) is described by the so-called cherry-pit model, a random system of partially interpenetrating spheres. For the simulation of fracture processes, the solid phase is approximated by an irregular spatial network of beams obtained by means of the so-called radical tessellation with respect to the pore spheres. FE calculations using standard software (ANSYS) yield the strain energies of the beams. These energies are used as fracture criterion according to which highly loaded beams are considered as broken and are removed from the network. The paper investigates the relationship between mean fracture strength and microstructure for structures close to real AAC samples and virtual structures with particular geometrical properties.

혼화재 및 화학반응제를 혼입한 경량기포콘크리트의 물성 개선 (Improvement of Physical Property of Autoclaved Light-Weight Concrete Using Admixtures and Chemical Reactants)

  • 송훈
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.87-95
    • /
    • 2012
  • Autoclaved lightweight concrete (ALC), also known as autoclaved aerated concrete (AAC), is a lightweight, precast building material that simultaneously provides structure, insulation. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, as well as sound and fireproof. ALC products include blocks, wall panels, floor and roof panels, and lintels. Recently, the use of ALC has became increasingly popular. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures and chemical reactants. Admixtures make use of meta kaolin and silica fume, chemical reactants make use of sodium silicate and sodium hydroxide. From the test result, the ALC using admixtures and chemical reactants have a good fundamental properties compared with plain ALC. These good fundamental properties is caused by the admixtures and chemical reactants of ALC by the reason of the micro filling effect and chemical binding of C-S-H gel, tobermolite and quartz.

Shear behaviour of Autoclaved Aerated Concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh

  • Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.487-498
    • /
    • 2023
  • Unreinforced masonry (URM) buildings are extensively adopted in many of the growing nations, particularly in India. Window or door openings are required for architectural or functional reasons, which pose a threat to the building's safety. The past earthquakes have shown that the seismic capability of these structures was very weak. Strengthening these unreinforced masonry walls using welded wire mesh (WWM) is one of the most commonly and economical methods. The present experimental study investigates the impact of openings on the shear behaviour of URM walls and the effectiveness of WWM in enhancing the shear performance of masonry wall. In the experimental program 16 specimens were cast, 8 unstrengthen and 8 strengthened specimens, under 8 unstrengthen and strengthened specimens, every 2 specimens had 0%, 5%, 10%, and 15% openings and all these walls were tested under diagonal compression. The results show that the shear carrying capacity reduces as the opening percentage increases. However, strengthening the URM specimens using WWM significantly improves the peak load, shear strength, ductility, stiffness, and energy dissipation. Furthermore, the strengthening of the URM walls using WWM compensated the loss of wall capacity caused by the presence of the openings.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.149-160
    • /
    • 2023
  • Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

규석 분말 및 석고 혼입에 따른 경량기포콘크리트의 강도특성 개선 (Improvement of Strength Characteristics in ALC added Silica Powder and Gypsum)

  • 송훈;추용식;이종규
    • 한국건설순환자원학회논문집
    • /
    • 제7권4호
    • /
    • pp.128-135
    • /
    • 2012
  • ALC는 경량이며 단열 및 차열 등의 성능이 우수한 반면 낮은 강도로 인한 모서리부의 취성파괴가 발생하기 쉬우므로 운반 및 취급 시 상당한 주의를 요구한다. 본 연구에서는 ALC의 물리적 성능개선을 위해 메타카올린 및 실리카퓸 등의 혼화재나 규석 분말 및 석고의 혼입율을 조절하여 제조한 ALC의 성능을 평가하였다. 연구결과 메타카올린이나 규석 분말의 혼입율이 18%인 경우 강도의 개선이 현저하였다. 이와 같은 결과는 공극의 충전효과에 의한 것으로 강도는 개선되나 밀도가 증가하므로 밀도를 낮추면서 강도를 개선할 수 있는 배합이나 제조법에 대한 연구가 필요하다.

  • PDF

An experimental study of AAC masonry prisms with chases under compression

  • Gregoria K. Langstang;Teiborlang Warjri;Richard B. Lyngkhoi;Comingstarful Marthong
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.375-389
    • /
    • 2024
  • Installing wiring or plumbing fixtures necessitates creating chases within masonry walls, which, while serving practical purposes, raises a crucial concern regarding the potential compromise of the masonry's structural integrity. Given these concerns, it becomes essential to thoroughly understand the impact of incorporating chases on masonry strength. In this study, 37 AAC masonry prisms (200×330×100 mm3) were cast and tested for compression. The prisms were equipped with chases of various depths -10 mm, 20 mm and 30 mm; and orientations (horizontal, inclined, and vertical), which were then filled with mortar using 1:2, 1:4, and 1:6 cement-to-sand ratios. The primary objectives were to assess the strength decrease in the prisms with different chase characteristics compared to a control specimen and to determine the percentage strength increase due to filling materials compared to unfilled chases. Key findings indicate that as chase depth increases, there is a substantial reduction in prism strength. However, the orientation of the chase does not significantly affect strength reduction. Importantly, filling the chases with mortar leads to a significant increase in prism strength. This study not only unveils the complex impact of chase characteristics on masonry strength but also emphasizes the crucial role of filling materials in strengthening these prisms.