DOI QR코드

DOI QR Code

Shear behaviour of Autoclaved Aerated Concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh

  • Received : 2022.07.18
  • Accepted : 2023.07.18
  • Published : 2023.09.10

Abstract

Unreinforced masonry (URM) buildings are extensively adopted in many of the growing nations, particularly in India. Window or door openings are required for architectural or functional reasons, which pose a threat to the building's safety. The past earthquakes have shown that the seismic capability of these structures was very weak. Strengthening these unreinforced masonry walls using welded wire mesh (WWM) is one of the most commonly and economical methods. The present experimental study investigates the impact of openings on the shear behaviour of URM walls and the effectiveness of WWM in enhancing the shear performance of masonry wall. In the experimental program 16 specimens were cast, 8 unstrengthen and 8 strengthened specimens, under 8 unstrengthen and strengthened specimens, every 2 specimens had 0%, 5%, 10%, and 15% openings and all these walls were tested under diagonal compression. The results show that the shear carrying capacity reduces as the opening percentage increases. However, strengthening the URM specimens using WWM significantly improves the peak load, shear strength, ductility, stiffness, and energy dissipation. Furthermore, the strengthening of the URM walls using WWM compensated the loss of wall capacity caused by the presence of the openings.

Keywords

Acknowledgement

Authors are thankful to Mr. Mayank Gangwar and Kartheek Kandheraboina, M.Tech (Structural Division), Department of Civil Engineering, NIT Meghalaya for their enormously help during casting and testing of the specimens.

References

  1. Arslan, M.E. and Celebi, E. (2019), "An experimental study on cyclic behavior of aerated concrete block masonry walls retrofitted with different methods", Constr. Build. Mater., 200, 226-239. https://doi.org/10.1016/j.conbuildmat.2018.12.132.
  2. ASTM C109/C109M (2007), Standard Test Method for Compressive Strength of Hydraulics 26 Cement Mortars (using 2-in or 50 mm Cube Specimens).
  3. ASTM E519/E519M-15 (2015), Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, ASTM International, USA.
  4. ASTM International, USA 2004. 27 ASTM A370 (2016), Standard Test Methods and Definitions for Mechanical Testing of Steel 28 Products.
  5. ASTM International, USA. 29 ASTM C1314-07 (2007), Standard Test Method for Compressive Strength of Masonry Prisms, 30 ASTM International, USA.
  6. Babatunde, S.A. (2017), "Review of strengthening techniques for masonry using fiber reinforced polymers", Compos. Struct., 161, 246-255. https://doi.org/10.1016/j.compstruct.2016.10.132.
  7. Banerjee, S., Nayak, S. and Das, S. (2018), "Enhancing shear capacity of masonry wallet using PP-band and steel wire mesh", IOP Conf. Ser. Mater. Sci. Eng., 431(7). 072004. https://doi.org/10.1088/1757-899X/431/7/072004.
  8. Banerjee, S., Nayak, S. and Das, S. (2019), "Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh", Constr. Build. Mater., 194, 179-191. https://doi.org/10.1061/(asce)mt.1943-5533.0003159.
  9. Banerjee, S., Nayak, S. and Das, S. (2020a), "Shear and flexural behaviour of unreinforced masonry wallets with steel wire mesh", J. Build. Eng., 30, 10125. https://doi.org/10.1016/j.jobe.2020.101254.
  10. Banerjee, S., Nayak, S. and Das, S. (2020b), "Improving the inplane behavior of brick masonry wallet using PP band and steel wire mesh", J. Mater. Civil Eng., 32(6), 04020132. https://doi.org/10.1061/(asce)mt.1943-5533.0003159.
  11. Cheng, S., Yin, S. and Jing, L. (2020), "Comparative experimental analysis on the in-plane shear performance of brick masonry walls strengthened with different fiber reinforced materials", Constr. Build. Mater., 259, 120387. https://doi.org/10.1016/j.conbuildmat.2020.120387.
  12. Dehghani, A., Nateghi-Alahi, F. and Fischer, G. (2015), "Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames", Eng. Struct., 105, 197-208. https://doi.org/10.1016/j.engstruct.2015.10.013.
  13. Donnini, J., Maracchini, G., Lenci, S., Corinaldesi, V. and Quagliarini, E. (2021), "TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior", Constr. Build. Mater., 272, 121643. https://doi.org/10.1016/j.conbuildmat.2020.121643.
  14. Doran, B., Ulukaya, S., Aslan, Z.U. and Karslioglu, M. (2021), "Experimental investigation of CFRP strengthened unreinforced masonry walls with openings experimental investigation of CFRP strengthened unreinforced masonry walls", Int. J. Arch. Heritage, 16(12), 1907-1920. https://doi.org/10.1080/15583058.2021.1918286.
  15. Dutta, S.C., Nayak, S., Acharjee, G., Panda, S.K. and Das, P.K. (2016), "Gorkha (Nepal) earthquake of April 25, 2015: Actual damage, retrofitting measures and prediction by RVS for a few typical structures", Soil Dyn. Earthq. Eng., 89, 171-184. https://doi.org/10.1016/j.soildyn.2016.08.010.
  16. Elgawady, M.A. and Lestuzzi, P. (2004), "A review of conventional seismic retrofitting techniques for URM", 13th International Brick and Block Masonry Conference, 1-10.
  17. ElGawady, M.A., Lestuzzi, P. and Badoux, M. (2007), "Static cyclic response of masonry walls retrofitted with fiber-reinforced polymers", J. Compos. Constr., 11(1), 50-61. https://doi.org/10.1061/(asce)1090-0268(2007)11:1(50).
  18. Elsamny, M. and Ezz-eldeen, H. (2017c), "Strengthening of brick walls with openings during construction by steel wire mesh around openings on both sides of wall", IOSRJMCE, 14(3), 131-139. https://doi.org/10.9790/1684-140305131139.
  19. Elsamny, M.K., Abd-Elhamed, M.K. and Mahmoud, M.H. (2016), "Rehabilitation of brick walls with openings using steel wire mesh", Int. J. Scientif. Eng. Res., 7(12), 236-248.
  20. Elsamny, M.K., Ezz-Eldeen, H.A. and Elmokrany, A.A. (2017b), "Experimental study of brick walls with opening strengthened during construction by using steel wire mesh embedded into bed joint mortar between bricks", Int. J. Eng. Sci. Invent. (IJESI), 6, 15-24.
  21. Elsamny, M.K., Ezz-Eldeen, H.A. and Elmokrany, A.A (2017a), "Strengthening of brick walls with openings during construction by steel wire mesh around openings on both sides of wall", IOSRJMCE, 14(3), 131-139. https://doi.org/10.9790/1684-140305131139
  22. Ferretti, D., Michelini, E. and Rosati, G. (2015), "Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling", Cement Concrete Res., 67, 156-167. https://doi.org/10.1016/j.cemconres.2014.09.005.
  23. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2020), "Experimental tests on strengthening strategies for masonry infill walls: A literature review", Constr. Build. Mater., 263, 120520. https://doi.org/10.1016/j.conbuildmat.2020.120520.
  24. Ghobarah, A. and Galal, K.E.M. (2004), "Out-of-plane strengthening of unreinforced masonry walls with openings", J. Compos. Constr., 8, 298-305. https://doi.org/10.1061/(ASCE)1090-0268(2004)8.
  25. Giaretton, M., Dizhur, D., Garbin, E., Ingham, J.M. and da Porto, F. (2018), "In-plane strengthening of clay brick and block masonry walls using textile-reinforced mortar", J. Compos. Constr., 22(5), 04018028. https://doi.org/10.1061/(asce)cc.1943-5614.0000866.
  26. Hamdy, G., El-salakawy, T. and El-gendy, A. (2018), "Strengthening loaded masonry walls to enable making openings-experimental and numerical investigation", Int. J. Scientif. Eng. Res., 9(11), 1149.
  27. IS 2250 (1981), Code of Practice for Preparation and Use of Masonry Mortars, Bureau of Indian Standard, New Delhi.
  28. IS 5816 (1999), Splitting Tensile Strength of Concrete-Method of Test, Bureau of Indian Standards, New Delhi.
  29. Jagadish, K.S., Raghunath, S. and Nanjunda Rao, K.S. (2003), "Behaviour of masonry structures during the Bhuj earthquake of January 2001", Proc. Ind. Acad. Sci., Earth Planet. Sci., 112(3), 431-440. https://doi.org/10.1007/BF02709270.
  30. Kadam, S.B., Singh, Y. and Li, B. (2014), "Strengthening of unreinforced masonry using welded wire mesh and microconcrete-Behaviour under in-plane action", Constr. Build. Mater., 54, 247-257. https://doi.org/10.1016/j.conbuildmat.2013.12.033.
  31. Kadam, S.B., Singh, Y. and Li, B. (2015), "Out-of-plane behaviour of unreinforced masonry strengthened using ferrocement overlay", Mater. Struct., 48, 3187-3203. https://doi.org/10.1617/s11527-014-0390-8.
  32. Kalali, A. and Kabir, M.Z. (2012), "Sharif university of technology cyclic behavior of perforated masonry walls strengthened with glass fiber reinforced polymers", Scientia Iranica, 19(2), 151-165. https://doi.org/10.1016/j.scient.2012.02.011.
  33. Kamrava, A.R., Najafgholipour, M.A., Fathi, F. and Dehghan, S.M. (2021), "An experimental study on the in-plane behavior of unreinforced masonry walls with an opening strengthened using steel fiber reinforced concrete overlays", J. Build. Eng., 36, 102084. https://doi.org/10.1016/j.jobe.2020.102084.
  34. Kouris, L.A.S. and Triantafillou, T.C. (2018), "State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM)", Constr. Build. Mater., 188, 1221-1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  35. Leal-graciano, J.M., Quinonez, B., Rodriguez-lozoya, H.E., Perezgavilan, J.J. and Lizarraga-pereda, J.F. (2020), "Use of GFRP as retrofit alternative for confined masonry walls with window opening subjected to in-plane lateral load", Eng. Struct., 223, 111148. https://doi.org/10.1016/j.engstruct.2020.111148.
  36. Lin, Y.W., Biggs, D., Wotherspoon, L. and Ingham, J.M. (2014), "In-plane strengthening of unreinforced concrete masonry wallettes using ECC shotcrete", J. Struct. Eng., 140(11), 04014081. https://doi.org/10.1061/(asce)st.1943-541x.0001004.
  37. Liu, Z. and Crewe, A. (2020), "Effects of size and position of openings on in‑plane capacity of unreinforced masonry walls", Bull. Earthq. Eng., 18(10), 4783-4812. https://doi.org/10.1007/s10518-020-00894-0.
  38. Marbaniang, D.F., Warjri, T. and Marthong, C. (2022), "Out-of-plane bending of masonry wall embedding with welded wire mesh (WWM) in different orientations", Innov. Infrastr. Solut., 7(1), 10-14. https://doi.org/10.1007/s41062-021-00676-w.
  39. Marcari, G., Manfredi, G., Prota, A. and Pecce, M. (2007), "Inplane shear performance of masonry panels strengthened with FRP", Compos. Part B: Eng., 38(7-8), 887-901. https://doi.org/10.1016/j.compositesb.2006.11.004.
  40. Mohan, A. and Jacob, B. (2016), "Strength and ductility in unreinforced masonry walls with two openings retrofitted by Carbon Fiber Reinforced Polymers", Int. Res. J. Eng. Technol., 03(09), 346-352.
  41. Parghi, A. and Alam, M.S. (2018), "A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector", Compos. Struct., 187, 518-534. https://doi.org/10.1016/j.compstruct.2017.11.085.
  42. Peiris, T.R.N. (2009), "Observations of damage due to the Kashmir earthquake of October 8, 2005 and study of current seismic provisions for buildings in Pakistan", Bull. Earthq. Eng., 7, 681-699. https://doi.org/10.1007/s10518-009-9118-5.
  43. Penava, D., Sarhosis, V., Ko, I. and Gulja, I. (2018), "Contribution of RC columns and masonry wall to the shear resistance of masonry in fi lled RC frames containing di ff erent in size window and door openings", Eng. Struct., 172, 105-130. https://doi.org/10.1016/j.engstruct.2018.06.007.
  44. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2019), "Compressive and shear bond strengths of grooved AAC blocks and masonry", Mater. Struct./Materiaux et Constructions, 52(6), 1-15. https://doi.org/10.1617/s11527-019-1428-8.
  45. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2019), "Manufacturing of autoclaved aerated concrete (AAC): Present status and future trends", Advances in Simulation, Product Design and Development: Proceedings of AIMTDR 2018, 825-833.
  46. Sandoval, O.J., Takeuchi, C., Carrillo, J. and Barahona, B. (2021), "Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors", Constr. Build. Mater., 267, 121054. https://doi.org/10.1016/j.conbuildmat.2020.121054.
  47. Sathiparan, N., Nissanka, N.A.A.C. and Priyankara, R.L.S. (2016), "A comparative study of meshtype retrofitting for unreinforced masonry under in-plane loading", Arab. J. Sci. Eng., 41(4), 1391-1401. https://doi.org/10.1007/s13369-015-1937.
  48. Shariq, M., Abbas, H.Ã., Irtaza, H. and Qamaruddin, M. (2008), "Influence of openings on seismic performance of masonry building walls", Build. Environ., 43, 1232-1240. https://doi.org/10.1016/j.buildenv.2007.03.005.
  49. Shermi, C. and Dubey, R.N. (2018), "In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar", Constr. Build. Mater., 178, 195-203. https://doi.org/10.1016/j.conbuildmat.2018.04.081.
  50. Tripathy, D. and Singhal, V. (2021), "Strengthening of weak masonry assemblages using wire reinforced cementitious matrix (WRCM) for shear and flexure loads", Constr. Build. Mater., 277, 122223. https://doi.org/10.1016/j.conbuildmat.2020.122223.
  51. Valluzzi, M.R., Tinazzi, D. and Modena, C. (2002), "Shear behavior of masonry panels strengthened by FRP laminates", Constr. Build. Mater., 16(7), 409-416. https://doi.org/10.1016/S0950-0618(02)00043-0.
  52. Voon, K.C. and Ingham, J.M. (2008), "Experimental in-plane strength investigation of reinforced concrete masonry walls", J. Struct. Eng., 134(5), 758-768. https://doi.org/10.1061/(ASCE)0733-9445(2008)134.
  53. Yardim, Y. and Lalaj, O. (2016), "Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing", Constr. Build. Mater., 102, 149-154. https://doi.org/10.1016/j.conbuildmat.2015.10.095.