• 제목/요약/키워드: austenite transformation

검색결과 189건 처리시간 0.026초

C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향 (Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels)

  • 전현조;오진후;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF

슈퍼 듀플렉스 스테인리스강(UNS S32506) 레이저 조관용접 튜브의 용접 후 열처리에 따른 부식거동 (Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions)

  • 조동민;박진성;홍승갑;황중기;김성진
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.102-111
    • /
    • 2021
  • The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.

Fe-30%Ni-0.35%C 합금에서 Ausformed Martensite의 기계적 성질에 미치는 Tempering처리의 영향 (Effect of Tempering Treatment on Mechanical Properties of Ausformed Martensite in Fe-30% Ni-0.35%C Alloy)

  • 이인기;이규복;김학신
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.44-52
    • /
    • 1994
  • In order to investigate the effect of tempring treatment on the mechanical properties of ausformed martensite in Fe-30%Ni-0.35%C alloy, the hardness, yield strength and elongation were examined by tensile test. 1. The strength of deformed austenite in Fe-30%Ni-0.35%C alloy was increased due to the work hardening induced from the dislocation density increased during deformation. The strength of ausformed martensite was increased because of defects inherited from deformed austenite by martensitic transformation. 2. The ductility of ausformed martensite was shown a nearly constant values independent of deformation degrees because of the interaction of multiple factors such as increased retained austenite, formation of void and decrement of twin in ausformed martensite. 3. The strength of ausformed martensite by tempering treatment was shown a little decrement up to $340^{\circ}C$, especially showed remarkable softening resistance in higher deformation degrees. 4. Virgin martensite and ausformed martensite were shown a maximum yield strength by clustering in tempering at $100^{\circ}C$ and above $100^{\circ}C$, yield strength was very small decreased due to the decrement of solute carbon by the destruction of clustering. 5. The decomposition of retained austenite was not shown up to $450^{\circ}C$ in ausformed martensite with tempering treatment, and the matrix was rapidly softening because of the decomposition of martensite and the formation of reversed austenite with tempering above $400^{\circ}C$.

  • PDF

Comparative Analysis of Strengthening with Respect to Microstructural Evolution for 0.2 Carbon DP, TRIP, Q&P Steels

  • Jin, Jong-Won;Park, Yeong-Do;Nam, Dae-Geun;Lee, Seung-Bok;Kim, Sung-Il;Kang, Nam-Hyun;Cho, Kyung-Mox
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.293-299
    • /
    • 2009
  • The microstructures and mechanical properties of Dual Phase (DP), Transformation-Induced Plasticity (TRIP), and Quenching & Partitioning (Q&P) steels were investigated in order to define the strengthening mechanism of 0.2 C steel. An intercritical annealing between Ac1 and Ac3 was conducted to produce DP and TRIP steel, followed by quenching the DP and TRIP steel being quenched at to room temperature and by the TRIP steel being austemperingaustempered-air cooling cooled the steel toat room temperature, respectively. The Q&P steel was produced from full austenization, followed by quenching to the temperature between $M_s$ and $M_f$, and then enriching the carbon to stabilize the austenite throughout the heat treatment. For the DP and TRIP steels, as the intercritical annealing temperature increased, the tensile strength increased and the elongation decreased. The strength variation was due to the amount of hard phases, i.e., martensite and bainite, respectively in the DP and TRIP steels. It was also found that the elongation also decreased with the amount of soft ferrite in the DP and TRIP steels and with the amount of the that was retained in the austenite phasein the TRIP steel, respectively for the DP and TRIP steels. For the Q&P steel, as the partitioning time increased, the elongation and the tensile strength increased slightly. This was due to the stabilized austenite that was enriched with carbon, even when the amount of retained austenite decreased as the partitioning time increased from 30 seconds to 100 seconds.

의탄성 형상기억합금에 대한 현상학적 구성모델 (A Phenomenological Constitutive Model for Pseudoelastic Shape Memory Alloy)

  • 호광수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.468-473
    • /
    • 2010
  • Shape memory alloys (SMAs) have the ability to recover their original shape upon thermo-mechanical loading even after large inelastic deformation. The unique feature is known as pseudoelasticity and shape memory effect caused by the crystalline structural transformation between two solid-state phases called austenite and martensite. To support the engineering application, a number of constitutive models, which can be formally classified into either micromechanics-based or phenomenological model, have been developed. Most of the constitutive models include a kinetic law governing the crystallographic transformation. The present work presents a one-dimensional, phenomenological constitutive model for SMAs in the context of the unified viscoplasticity theory. The proposed model does not incorporate the complex mechanisms of phase transformation. Instead, the effects induced by the transformation are depicted through the growth law for the back stress that is an internal state variable of the model.

TRIP강의 비대칭 거동과 스프링백 (Asymmetric Behavior and Springback of Transformation-Induced Plasticity (TRIP) Steels)

  • 전성욱;정재봉;이현석;김병민;김지훈
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.333-340
    • /
    • 2017
  • The cyclic hardening behavior of transformation-induced plasticity (TRIP) steels shows tension-compression asymmetry known to be attributed to transformation of retained austenite into martensite during deformation. In this work, YoshidaUemori hardening model was used to represent the asymmetric hardening behavior of TRIP1180 steel. Yoshida-Uemori hardening model parameters were obtained from three sets of data: tension-compression, compression-tension, and a combination of the two. Material models were validated for U-bending and springback.

열연공정의 온라인 변태율 측정장치 (On-line measurement of metallurgical transformation in hot-rolled steel)

  • 김상영;강명구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.711-713
    • /
    • 1997
  • The mechanical properties of a hot rolled steel is mostly governed by a cooling control on the run out table. During the cooling control, the hot rotted steel performs a metallurgical transformation(austenite ${\to}$ ferrite) which can be measured with a magnetic flux detector. The magnetic flux detector consisting of exciting and detecting coil can estimates the metallurgical transformation by measuring the variation of permeability in steel. We developed the method of detecting the magnetic property of hot rolled steel and processing the measured signal, Which makes possible to measure on-line metallurgical transformation.

  • PDF

퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태- (An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite-)

  • 김옥삼;송관흠;구본권
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

상변태를 고려한 탄소강 용접부의 잔류응력 해석에 관한 연구 (A Study on the Analysis of Residual Stress in Weldment by Considering the Phase Transformation of Carbon Steel)

  • 조시훈;김재웅
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.390-398
    • /
    • 2001
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper suggests new analysis method to predict welding residual stress by considering solid phase transformation during welding process. Using the method, analysis is performed for medium and low carbon steel. The analysis result for medium carbon steel reveals that case considering phase transformation has compressive residual stress in contrast with the case neglecting phase transformation because of martensite formation. However, for the case of low carbon steel, residual stress shows little difference between the case considering phase transformation and the other case, because it has small transformation strain and recovers rapidly stress after phase transformation.

15-5PH 스테인리스강의 시효열처리 조건변화가 상변태 및 기계적 성질에 미치는 영향 (Influence of Variation of Aging Heat Treatment Condition on Phase Transformation and Mechanical Properties of 15-5PH Stainless Steel)

  • 김태수;이제원;노용식;성장현;임수근
    • 열처리공학회지
    • /
    • 제32권5호
    • /
    • pp.212-223
    • /
    • 2019
  • This study is to investigate the relationship between microstructural factors and tensile properties after aging heat treatment of the 15-5PH stainless steel at the temperature range of $450^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$ for various time. For the aging time of 2 hours, hardness showed maximum at $450^{\circ}C$ and then decreased with increasing aging temperature. While, hardness decreased gradually during aging $450^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$ from 1 hour to 5 hours but the hardness nearly unchanged until the 100 hours after 5 hours aging. When aging at $450^{\circ}C$, Cu atoms preferentially aggregated at the prior austenite grain boundaries and martensite lath boundaries, and Cu concentration at those boundaries was nearly unchanged even after aging for 100 hours. Therefore it was suggested that the coherency is still maintained after 100 hours aging at $450^{\circ}C$. Aging at $500^{\circ}C$ and $550^{\circ}C$ results in an increase in the concentration of Ni at the martensite lath boundaries and prior austenite grain boundaries, resulting in the formation of reversed austenite. Especially, when aged at $550^{\circ}C$ for 100 hours, the concentration of Ni remarkably increased at those boundaries, and thus the microstructure of herring bone shape was appeared. Considering the migration of Ni atom to the lath boundaries and prior austenite grain boundaries, Ni atoms contributed greatly to the formation of reversed austenite. On the other hand, it was found that Cu atoms hardly moving to those boundaries may not be contributed to the formation of reversed austenite. When aging at $450^{\circ}C$, the coarsening of the precipitated Cu atoms proceeded very slowly with increasing aging time, therefore the decrease in strengths were small but the reduction area was considerably increased due to the softening of the matrix. At the aging temperature of $500^{\circ}C$ and $550^{\circ}C$, the strengths decreased and the elongation and reduction area increased due to the appearance of the reversed austenite. Especially, the increase of reduction area was remarkable.