Browse > Article
http://dx.doi.org/10.5695/JKISE.2021.54.3.102

Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions  

Cho, Dong Min (Department of Advanced Materials Engineering, Sunchon National University)
Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Hong, Seung Gab (POSCO Technical Research Laboratories)
Hwang, Joong-Ki (School of Mechanical Engineering, Tongmyong University)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.54, no.3, 2021 , pp. 102-111 More about this Journal
Abstract
The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.
Keywords
Super duplex stainless steel; UNS S32506; Corrosion; PWHT; Laser welding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. G. Barrows, J. B. Newkirk, A modified system for predicting σ formation, Metall. Mater. Trans. 3B (1972) 2889-2893.
2 H. Bohni, T. Suter, A. Schreyer, Micro-and nano techniques to study localized corrosion, Electrochim. Acta 40 (1995) 1361-1368.   DOI
3 C. J. Park, V. S. Rao, H. S. Kwon, Effects of sigma phase on the initiation and propagation of pitting corrosion of duplex stainless steel, Corrosion 61 (2005) 76-83.   DOI
4 Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, Zhang, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion resistance of electron beam-welded duplex stainless steel, Corros. Sci. 141 (2018) 30-45.   DOI
5 Stffan Herzman, The influence of nitrogen on microstructure and properties of highly alloyed stainless steel welds, ISIJ Int. 41 (2001) 580-589.   DOI
6 Annual Book of ASTM Standards, ASTM G 150, Standard test method for electrochemical critical pitting temperature testing of stainless steels.
7 Z. Zhang, H. Zhao, H. Zhang, J. Hu, J. Jin, Zhang, Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment, Corros. Sci. 121 (2017) 22-31.   DOI
8 I. Lee, C. S. Cheon, T. H. Yim, Y. H. Han, M. H. Lee, The influence of heat treatment temperature on microstructure and corrosion behavior SDSS tube, J. Kor. Inst. Surf. Eng. 48 (2015) 329-334.   DOI
9 Annual Book of ASTM Standards, ASTM G 48, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution.
10 M. B. Cortie, J. H. Potgieter, The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels, Metall. Mater. Trans. 22A (1991) 2173-2179.
11 Y. C. Lu, R. Bandy, C. R. Clayton, R. C. Newman, Surface enrichment of nitrogen during passivation of a highly resistant stainless steel, J. Electrochem. Soc. 130 (1983) 1774-1776.   DOI
12 A. J. Ramirez, J. C. Lippold, S. D. Brandi, The relationship between chromium nitride and secondary precipitation in duplex stainless steels, Metall. Mater. Trans. 34A (2003) 1575-1597.
13 Y. Li, W. Li, J. C. Hu, H. M. Song X. J. Kin, Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance, Int. J. Plast. 88 (2016) 53-69.   DOI
14 A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009) 2222-2247.   DOI
15 H. B. Pereira, C. R. F. Azevedo, Can the drop evaporation test evaluate the stress corrosion cracking susceptibility of the welded joints of duplex and super duplex stainless steels?, Eng. Fail. Anal. 99 (2019) 235-247.   DOI
16 S. Saravanan, N. Sivagurumanikandan, K. Raghukandan, Effect of heat input on microstructure and mechanical properties of Nd: YAG laser welded super duplex stainless steel-Numerical and experimental approach, Optik 185 (2019) 447-455.   DOI
17 C. O. A. Olsson, D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta 48 (2003) 1093-1104.   DOI
18 L. F. Garfias-Mesias, J. M. Skyes, Effect of copper on active dissolution and pitting corrosion of 25% Cr duplex stainless steels, Corrosion 54 (1998) 40-47.   DOI
19 S. J. Kim, S. G. Hong, A study on pitting initiation mechanism of super-austenitic stainless steel weld in chloride environment, J. Mater. Res. 31 (2016) 3345-3351.   DOI
20 L. Claeys, T. Depover, I. D. Graeve, K. Verbeken, First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel, Mater. Char. 156 (2019) 109843.   DOI
21 A. Dumay, J. P. Chateau, S. Allain, S. Mogot, O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel, Mater. Sci. Eng. 483A (2008) 184-187.
22 T. M. Devine, The mechanism of sensitization of austenitic stainless steel, Corros. Sci. 30 (1990) 135-151.   DOI
23 Y. Q. Wang, J. Han, H. C. Wu, B. Yang, X. T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 259 (2013) 1-7.   DOI
24 V. A. Hosseini, L. Karlsson, S. Wessman, N. Fuertes, Effect of sigma phase morphology on the degradation of properties in a super duplex stainless steel, Materials 11 (2018) 933-953.   DOI
25 S. J. Kim, S. G. Hong, M. S. Oh, Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment, J. Mater. Res. 32 (2017) 1343-1350.   DOI
26 M. E. Williams, V. J. Gadgil, J. M. Krougman, F. P. Ijsseling, The effect of σ-phase precipitation at 800℃ on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corros. Sci. 36 (1994) 871-881.   DOI
27 G. T. Burnstein, P. C. Pistorius, S. P. Martin, The nucleation and growth of corrosion pits on stainless steel, Corros. Sci. 35 (1993) 57-62.   DOI
28 J. O. Nilsson, Super duplex stainless steel, Mater. Sci. Technol. 8 (1992) 685-700.   DOI
29 P. D. Bilmes, C. L. Liorente, L. Saire Huaman, L. M. Gassa, C. A. Gervasi, Microstructure and pitting corrosion of 13CrNiMo weld metals, Corros. Sci. 48 (2006) 3261-3270.   DOI
30 F. Lu, P. Yang, L. Meng, F. Cui, H. Ding, Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels, J. Mater. Sci. Tech. 27 (2011) 257-265.   DOI
31 A. Lechartier, N. Meyer, R. Estevez, M. Mantel, G. Martin, G. Parry, M. Veron, A. Deschamps, Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation, Mater. 5 (2019) 100190.
32 L. Weber, P. J. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content, Mater. Sci. Eng. 242A (1998) 222-229.
33 R. A. Perren, T. A. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M. O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method I. Precipitation-free states, Corros. Sci. 43 (2001) 707-726.
34 P. Niklas, F. A. Rachel, S. Wessman, Precipitation of chromium nitrides in the super duplex stainless steel 2507, Metall. Mater. Trans. 46A (2015) 1062-1072.
35 J. Y. Choi, J. H. Ji, S. W. Hwang, K. T. Park, Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel, Mater. Sci. Eng. 534A (2012) 673-680.
36 Y. K. Lee, C. S. Choi, driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system, Metall. Mater. Trans. 31A (2000) 355-360.