• Title/Summary/Keyword: attracting power

Search Result 165, Processing Time 0.033 seconds

A Study on the Impact of a Process approach to Fine Art Exhibit Design on Visitor Interest and Appreciation (과정접근적 순수미술 전시가 관람자의 관심도와 감상력에 미치는 영향에 관한 연구)

  • 김주연
    • Korean Institute of Interior Design Journal
    • /
    • no.3
    • /
    • pp.33-37
    • /
    • 1994
  • Increasing interest and providing educational experience for the public have long been a major ARt Museum goal. This interest raises the question of how visitors respond to museum exhibits. Much researches have been done which indicate the newer and more interactive exhibits are indeed more didactic and enjoyable than conventional exhibits. This study examined the effectiveness of art exhibits which display information about the creative process of developing a work art along with the final work of art to test if they results in more viewer interest and greater appreciation of the final work of art than those which display only the final work of art. In the early part of the 1991 spring, a counterblancing AB/BA quasi-experiment was carried out in the Jhnson Museum of Art, Cornell University. Methods used to collect and measure visitory interest and appreciation were unobtrusive observation and survey questionnaire. As the indirect measurement of visitor interest, attracting power and holding power were measured by unobstrusive observation of visitor time spent, while the direct measurement of visitor interest and appreciation, visitor's interest, understanding , and degree of favorableness were measured by survey questinnaire. Data analysis reached conclusion that the process approach fine art exhibit designs significantly resulted in more viewer interest and greater appreciation of art work than the conventional fine art exhibit design.

  • PDF

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Application of Carbon Nanotubes in Displays

  • Feng, T.;Sun, Z.;Zhang, Z.J.;Lin, L.F.;Ding, Hui.;Chen, Y.W.;Pan, L.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1529-1531
    • /
    • 2008
  • Since the discovery over a decade ago, carbon nanotubes (CNTs) have been attracting considerable attentions both from scientists and engineers. Because of the excellent field emission properties, such as high aspect ratio, extremely small diameter, and high emission current, CNTs become a potential candidate as field emitter for field emission display (FED) and lighting (FEL) as backlight for LCD. Due to the exceptional physical properties, such as superior thermal and electrical conductivities, as well as high stiffness and strength, the CNT-based composites can be as light-weight heat-sink or thermal spreader materials used for power electronic devices, such as power LED for general illumination. The CNTs for above applications will be reviewed, and related materials and devices will be demonstrated in this paper.

  • PDF

Lightning Impulse Breakdown Characteristic of Dry-Air/Silicone Rubber Hybrid Insulation in Rod-Plane Electrode

  • Kwon, Jung-Hun;Seo, Cheong-Won;Kim, Yu-Min;Lim, Kee-Joe
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1181-1187
    • /
    • 2015
  • Sulfur hexafluoride (SF6) gas is used widely in electric power equipment such as Gas Insulated Switchgear (GIS), Gas Insulation transmission Line (GIL), and Gas Circuit Breaker (GCB). But applications of SF6 should be restricted because SF6 gas is one of the greenhouse effect gases. To reduce use of SF6 gas, a study on eco-friendly alternative insulation medium is needed. In this paper, we investigated lightning impulse (LI) breakdown of dry-air which is attracting attention as an ecofriendly alternative gas and the LI breakdown of hybrid insulation combined with dry-air and solid insulation (Room-Temperature Vulcanizing Silicone Rubber-RTV SIR) and dry-air in inhomogeneous fields according to gap distance and pressure. The experiment results showed that the LI breakdown strength of hybrid insulation system was higher than that of dry-air insulation system. It was verified that the development of technology related to eco-friendly power apparatus compact such GIS, GCB and GIL can be used as basic research data.

A Study on Ripple Current Reduction of Interleaved Bi-directional DC-DC Converter for Traction Characteristic of Railway Vehicle (철도차량 견인특성을 고려한 인터리브드 양방향 DC-DC 컨버터의 리플전류 저감에 관한 연구)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.733-739
    • /
    • 2017
  • Research on fuel cell systems attracting attention as an environmentally friendly energy source has been actively conducted. And research is being conducted on railway vehicles that use direct current power generated by a fuel cell as an energy source. In this paper, a two-phase interleaved bidirectional DC-DC converter has been proposed which can supply electric energy of a battery to a traction motor during powering and charge the battery with regenerative energy during braking. Therefore, the topology of the energy storage system applied to the railway vehicle was analyzed, and the simulation was performed by constructing the power conversion system by this topology. Experiments were also conducted through hardware design and fabrication based on the simulation analysis results, and the validity of the hardware implementation was verified.

A Study of Visitor Behavior in Informal Learning Setting: A Natural History Museum

  • Kim, Chan-Jong;Lee, Chang-Zin;Shin, Myeong-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • This study was designed to determine whether visitor behavior at science museums differs across various exhibit styles and between Family and Non Family groups. Eight exhibits in the natural history sections of the national science museum located in Daejeon were identified to have distinctive characteristics and styles. At each selected exhibit, visitor behavior was observed for an hour. An average of eighty people stopped by each exhibit. Descriptive analyses of visitors behaviors showed that: 1) families spent more time than non-family visitors; 2) families paid more attention to exhibits, for instance, they talked and commented about the exhibits; 3) exhibit characteristics related to holding power and attention span; 4) families more frequently visited exhibits related to school curriculum rather than ones that looked attractive, fun or novel. Visitors did not play with sensory simulation types of exhibits as much as expected. This implicates that exhibit style does not guarantee long visitors holding time and attracting power. Non-significant results are explained in terms of environmental and exhibit-related factors. Several potential factors including visitor factors, setting factors, and exhibit factors are discussed and explored with topics proposed for future study.

Crowd Participation Pattern in the Phases of a Product Development Process that Utilizes Crowdsourcing

  • Tran, Anhtuan;Hasan, Shoaib Ul;Park, Joon-Young
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.266-275
    • /
    • 2012
  • The rise of crowdsourcing and web 2.0 opens plenty of opportunities for companies who want to exploit external sources of ideas for internal innovation. Utilization of crowdsourcing for product design and development has been attracting the attention of both enterprises and researchers. Many cases of implementation of crowdsourcing for product design and development such as: Threadless, FIAT Mio, Lego online Factory, etc., have made crowdsourcing a promising alternative source of innovative power. Although crowdsourcing gained access due to improved Internet access and web 2.0, it is little understood how the crowd, with respect to participation, behaves for any crowdsourcing project. To investigate this, we conducted an experiment on a real crowd of engineering related individuals to figure out the crowd participation pattern for various product design and development phases of a new product development project. The experiment results give a quantitative view of the participation of the crowd (i.e., crowd participation pattern) in various phases of a product design and development process that utilizes crowdsourcing, provide a practical guidance for companies to harness the power of the crowd sensibly, and provide experimental data for further research in this field.

An Analysis of the Limit Cycle Oscillation in Digital PID Controlled DC-DC Converters

  • Chang, Changyuan;Hong, Chao;Zhao, Xin;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.686-694
    • /
    • 2017
  • Due to the wide use of electronic products, digitally controlled DC-DC converters are attracting more and more attention in recent years. However, digital control strategies may introduce undesirable Limit Cycle Oscillation (LCO) due to quantization effects in the Analog-to-Digital Converter (ADC) and Digital Pulse Width Modulator (DPWM). This results in decreases in the quality of the output voltage and the efficiency of the system. Meanwhile, even if the resolution of the DPWM is finer than that of the ADC, LCO may still exist due to improper parameters of the digital compensator. In order to discover how LCO is generated, the state space averaging model is applied to derive equilibrium equations of a digital PID controlled DC-DC converter in this paper. Furthermore, the influences of the parameters of the digital PID compensator, and the resolutions of the ADC and DPWM on LCO are studied in detail. The amplitude together with the period of LCO as well as the corresponding PID parameters are obtained. Finally, MATLAB/Simulink simulations and FPGA verifications are carried out and no-LCO conditions are obtained.

Thermal, Dielectric Properties Characteristics of Epoxy-nanocomposites for Organoclay of Several Types (여러종류의 Organoclay에 대한 에폭시-나노콤포지트의 열적, 유전특성에 관한 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. In the paper work, the electrical and thermal properties of epoxy/organoclay nanocomposites materials were studied. The electrical insulation characteristics were analyzed through the permittivity characteristics. by analyzing the permittivity spectra, it was found that dielectric constant becomes smaller with increase frequency and becomes larger with increase temperature. This indicates restriction of molecular motion and strong bonds at the epoxy/organoclay nanocomposites. The morphology of nanocomposites obtained was examined using TEM and X-ray diffraction. It has been shown that the presence of polar groups leads to an increased gallery distance and partial exfoliation. Nevertheless, full exfoliation of clay platelets has not been achieved.