• 제목/요약/키워드: attitude reference system

검색결과 144건 처리시간 0.038초

동적환경이 스트랩다운 비행자세측정장치의 성능에 미치는 영향 (The effect of the dynamic environments on the performance of SDARS)

  • 신용진;전창배;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.658-662
    • /
    • 1988
  • The performance of a strapdown attitude reference system(SDARS) under dynamic environments was analyzed by means of computer simulation. The study is aimed toward the performance evaluation in the presence of translational or angular vibration during 20 sec of flight time. The simulation was based on the error model of rate gyro, and Euler angle algorithm was employed to compute the attitude.

  • PDF

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

점 대응 기법을 이용한 카메라의 교정 파라미터 추정에 관한 연구 (A Study on the Estimation of Camera Calibration Parameters using Cooresponding Points Method)

  • 최성구;고현민;노도환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.161-167
    • /
    • 2001
  • Camera calibration is very important problem in 3D measurement using vision system. In this paper is proposed the simple method for camera calibration. It is designed that uses the principle of vanishing points and the concept of corresponding points extracted from the parallel line pairs. Conventional methods are necessary for 4 reference points in one frame. But we proposed has need for only 2 reference points to estimate vanishing points. It has to calculate camera parameters, focal length, camera attitude and position. Our experiment shows the validity and the usability from the result that absolute error of attitude and position is in $10^{-2}$.

  • PDF

Trajectory and Attitude Control for a Lunar lander Using a Reference Model (2nd Report)

  • Abe, Akio;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.531-536
    • /
    • 2003
  • In this paper, a redesigned guidance and control system for a lunar lander is presented. In past studies, the authors developed a trajectory and attitude control system which achieves the vertical soft landing on the lunar surface. It is confirmed that the system has a good tracking ability to a predefined profile and good robustness against a thruster failure mode where a partial failure of clustered engines was assumed. However, under the previous control laws, the landing point tends to be shifted, in response to the system parameter values, from a target point. Also, an unbalanced moment due to a thruster failure mode was not considered in the simulation. Therefore, in this study, the downrange control is added to the system to enable the vehicle to land at a pre-assigned target point accurately. Furthermore, inhibiting the effect of the unbalanced moment is attempted thorough redesigning the attitude control system. A numerical simulation was performed to confirm the ability of the proposed system with regard to the above problems. Moreover, in the past simulations, a low initial altitude was assumed as an initial condition: in this study, however, the performance of the proposed system is examined over the whole trajectory from an initial altitude of 10 [km] to the lunar surface.

  • PDF

저궤도 위성 자세제어용 자이로 고전압 발생기 설계 (The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계 (The RLG's Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

소형무인항공기를 위한 소형 경량 AHRS의 지상시험 및 성능 평가 (Ground Test and Performance Evaluation of Miniaturized AHRS for Small-Scale UAV)

  • 노민식;송준범;송우진;강범수
    • 한국항행학회논문지
    • /
    • 제15권2호
    • /
    • pp.181-188
    • /
    • 2011
  • 소형무인항공기의 경우 유효탑재하중의 여유가 많지 않기 때문에 AHRS의 소형화가 필요하다. 본 논문에서는 소형무인항공기를 위해 소형, 경량으로 설계 제작한 AHRS의 성능을 가속도 외란이 적은 환경에서 시험하고 평가하였다. 센서는 저가의 MEMS 제품을 사용했으며 자세 보정을 위해 가속도계와 지자기계가 같이 사용되었다. 자세계산에는 특이점이 존재하지 않고 비교적 계산이 간단한 쿼터니언을 사용했으며 자세 보정 알고리듬에는 칼만필터가 사용되었다. 본 논문에서는 소형무인항공기에 성공적으로 적용된 사례가 있는 상용 항법장치와의 비교를 통해 설계된 AHRS의 성능시험을 진행하였다. 설계된 AHRS의 자세 데이터가 상용 항법장치와 수직축 $0.5^{\circ}$이내, 수평축 $1.5^{\circ}$ 이내로 허용 가능한 차이를 가지는 것을 보였으며, 본 시험환경 내에서 소형무인항공기제어에 적합한 자세각 출력을 내는 것을 확인하였다.

자율무인잠수정의 자세계측장치의 개발 (Development of Motion Reference Unit for Autonomous Underwater Vehicle)

  • 김도현;오준호
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.101-108
    • /
    • 1998
  • This paper concerns the navigation algorithm of motion reference unit (MRU) for autonomous underwater vehicle (AUV) We apply the strapdown navigation system using middle level inertial sensors. But, because the MRU consists of inertial sensors, the values of AUV motion calculated by navigation computer are increased by drift property of inertial sensors. Therefore, we propose the attitude algorithm using switching method according to the motion of AUV From this algorithm, the drift terms are eliminated effectively for roll and pitch. But, another device is required for yaw angle.

  • PDF

Design of a Model Reference Adaptive Control System with Dead Zone

  • Yokota, Yukihiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1239-1244
    • /
    • 2004
  • Precise positioning is an important problem facing motion control systems which usually use electric motor. A motor possesses a nonlinear property which degrades the positioning accuracy. Therefore, a compensator which linearizes the relationship between the angular velocity and input signal of the motor is required to enable precise positioning. In this paper, the design of a Model Reference Adaptive Control System (MRACS) for realizing the precise positioning for a system using a motor including the nonlinear property is described. The designed MRACS is applied to the attitude control problem on a satellite using a DC servomotor to drive its reaction wheel. Experimental results demonstrate the validity of a proposed control method for a positioning control system with an electric motor.

  • PDF