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ABSTRACT: In this paper, a redesigned guidance and control system for a lunar lander is presented. In past studies, the authors 
developed a trajectory and attitude control system which achieves the vertical soft landing on the lunar surface. It is confirmed that 
the system has a good tracking ability to a predefined profile and good robustness against a thruster failure mode where a partial 
failure of clustered engines was assumed. However, under the previous control laws, the landing point tends to be shifted, in response 
to the system parameter values, from a target point. Also, an unbalanced moment due to a thruster failure mode was not considered in 
the simulation. Therefore, in this study, the downrange control is added to the system to enable the vehicle to land at a pre-assigned 
target point accurately. Furthermore, inhibiting the effect of the unbalanced moment is attempted thorough redesigning the attitude 
control system. A numerical simulation was performed to confirm the ability of the proposed system with regard to the above 
problems. Moreover, in the past simulations, a low initial altitude was assumed as an initial condition: in this study, however, the 
performance of the proposed system is examined over the whole trajectory from an initial altitude of 10 [km] to the lunar surface.  
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1. INTRODUCTION 

 
To date, guidance and control (GC) systems for a lunar 

lander have been widely studied. In the GC system, an accurate 
vertical soft landing at the target point and robustness against 
disturbances such as thrust failure are required. 

Table 1 shows the results of past and present studies (Ref. 
[1]～[5]). Throughout these studies, a gravity-turn descent is 
assumed in order to achieve the vertical landing. 

Originally, this study was initiated by McInnes of the 
University of Glasgow in the United Kingdom in 1998. He 
derived the direct adaptive control law which tracks the vehicle 
to a predefined velocity-altitude profile, which provides a 
semiminimal fuel consumption trajectory for the gravity-turn 
decent (Ref. [1]). Also, his method provides the lander with a 
compensation mechanism against the partial failure mode of 
clustered thrusters.  

In 2000, Shimada, one of the present authors, revealed that 
McInnes’ control law was not sufficient for stability, and he 
developed the nonlinear robust trajectory control law which 
introduced a concept of ideal error dynamics in order to 
improve the speed of error convergence. This control law 
possesses a better convergence property of the velocity error 
and has greater robustness against the thruster failure mode 
than McInnes’ method (Ref. [2]).  

In 2002, the authors added altitude control to the GC 

system since in the previous two methods, only the velocity 
could be controlled in spite of using both the altitude and 
velocity signals (Refs. [3],[4]).  

At the ICCAS Conference in autumn 2002, the authors 
presented for the first time, the attitude control portion added to 
the GC system to guarantee the gravity-turn descent (Ref.[5]). 
However, under these control laws adopted, the landing point 
was apt to deviate from the target point since the downrange 
was not controlled.  

Furthermore, to date, the authors have not taken into 
account the effect of the unbalanced moment caused by thruster 
failure. In addition, a low initial altitude has been chosen in 
accordance with McInnes (Ref.[1]) in order to compare our 
method with his method.  

Therefore, in this study, the authors attempt to design a 
trajectory and attitude control system which satisfies an 
accurate touch down position and inhibits the effect of the 
unbalanced moment. 

Numerical simulation is performed to confirm the tracking 
ability of the state variables to the reference states, and the 
ability to deal with the lack of the thruster and the effect of its 
unbalanced moment. Furthermore, in the simulation, the initial 
altitude is extended to a higher altitude, a circular orbit of 10 
[km], in order to examine the performance of the proposed 
system.  
 

Table 1 Performance evaluations of control systems. 
Position Control   

Downrange Altitude
Velocity 
Control

Vertical 
Landing

Soft 
Landing 

Attitude 
Control 

1998 McInnes -- -- △ ○ ○ -- 
2000 Our Study -- -- ○ ○ ○ -- 
2002 Our Study -- ○ ○ ○ ○ -- 
2002 Our Study -- ○ ○ ○ ○ △ 
2003 Present Study ○ ○ ○ ○ ○ ○ 

○｠ good ｠ ,△｠ satisfied｠ -- nothing 
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2. DYNAMICS OF LUNAR LANDER 
 

Figure 1 illustrates the descent motion of the lunar lander. 
In the figure, v, T and mg denote the velocity, thrust and gravity 
vectors, respectively. In the formulation of the lunar landing 
model, the translational and rotational motions are taken into 
account and the flat surface model is assumed. The rotation of 
the moon is not considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The local vertical-horizontal coordinates, o-xz, fixed on the 
lunar surface are regarded as an inertial coordinate system. 
Figure 2 shows definitions of the flight path angle γ, the 
attitude angle θ, the angle of attack α, and the pitching moment 
M. These angles must satisfy the following relationship.  
 

)()()( ttt αγθ +=    (1) 

 
As shown in Figure 2, in the gravity-turn descent, the 

direction of the thrust vector must be controlled in order to be 
opposite to that of the velocity vector. For this purpose, side 
thrusters are used to produce the pitching moment My. 

The motion of the lunar lander can be described in the 
following nonlinear form. 
 

)()(),(),()( ttttt duxgxfx ++=&   (2) 
 



























−
=



























−

−−
+−

=

yy

B

B

I

vg

g
t

tq

vg

tg

xv

zv

t

10

00

0sin)(

0cos

00

00

),(,

0

)(

sin)(

)(cos

cos

sin

),(
α

α
γ

γ
θα
θα

xgxf

&

&

  T
BB tqttvtztxt )](),(),(),(),([)( γ=x  

T
y tMtnt )](),([)( =u  

T
yyyD IMt ],0,0,0,0[)( =d  

 
Here, xB and zB, are the positions, v the velocity, γ the flight 
path angle, θ the attitude angle, and q the pitch rate. Iyy is the 
moment of inertia of the lander about the yB axis and MyD is the 
unbalanced moment caused by the thruster failure mode. The 
control input u consists of the thrust-to-weight ratio n=T/mg 
and the pitching moment My. 

As mentioned before, to perform the gravity-turn descent, 
the angle of attack α must be maintained as zero in Eq.(1) 
along the trajectory. Namely, the attitude angle θ must be 
controlled by the attitude control system, to coincide with the 
flight path angle γ. 
 

0)(..)()( == ttstt αγθ    (3) 

 
3. CONTROL SYSTEM DESIGN 

 
3.1 Nominal Motion 

In the present study, the nominal gravity-turn descent is 
regarded as an ideal motion to be followed by the lander. This 
ideal model (nominal model) can be described by the following 
equation. 
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Here, the nominal velocity vnom in the third row is defined as an 
exponential function of the actual altitude z according to 
Ref.[1]. The first and second rows are obtained from Eq.(2) 
under the conditions of the gravity-turn.  
 
3.2 Actual Error Dynamics 

The actual error dynamics is introduced to guarantee the 
stability of the dynamical system, in Eq.(2). The error in the 
trajectory control eT is defined as  
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)()()( ttt TnomTT xxe −=⇔ ,  (5) 

 
where the nominal state xTnom is a solution of Eq.(4). 

Differentiating Eq.(5) and using Eqs.(2) and (4) under the 
condition of α (t) =0, a linear time-varying (LTV) error model 
can be obtained: 
 

)()()()()( 1 ttuttt TTTTT dbeAe ++=&  (6) 
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In order to obtain a controllable-canonical-like form, a new 
error vector eTξ  is defined by using a matrix TC. 
 

)}()(){()()()( 11 tttttt TnomTCTCT xxTeTe −== −−
ξ  (7) 
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Using this transformation, we obtained  
 

)()()()()( 1 ttuttt CCTCT dbeAe ++= ξξ&   (9a) 
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Next, we consider the attitude control system. In order to 

achieve the gravity-turn, another error vector is defined as 
follows: 
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)()()( ttt AnomAA xxe −=⇔ .  (10) 

 
Differentiating the above equation with respect to time, the 
following error equation can be obtained.  
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   Next, combining the vectors eTξ  and eA into one vector 
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the whole actual error dynamics can be rewritten as follows: 
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In order to guarantee stability in the actual error model , the 
following control law is employed.  
 

)()()()( tttt seKu +−=    (14) 
 









=

)()(000

00)()()(
)(

54

321

tktk

tktktk
tK  

Ttstst )](),([)( 21=s  
 
Here, the matrix K(t) consists of variable gains and its 
components k1(t), k2(t) and k4(t) affect the natural frequencies 
of the controlled system. k3(t) and k5(t) also affect the damping 
properties. Here, the vector s designates a new control vector 
which is defined in section 3.5. 
 
3.3 Ideal Error Dynamics 
   In this section, ideal error dynamics is introduced so as to 
improve the convergence property of the actual error dynamics. 
The ideal error em is defined as the difference between the ideal 
states xm of a reference model (see Fig.3) and the nominal 
states xnom. 
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The ideal error dynamics is defined by the following equation. 
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Note that the coefficient matrix Am consists of two controllable 
canonical forms, which are introduced in order to cancel the 
three 1s in Am and A(t) in Eq. (19). 
 
3.4 Tracking Error Model 

In this section, a third error model is also introduced as 
below in order to make the actual error track the ideal error, 
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Rewriting this equation, the right-hand side becomes the 
difference between the reference model and the actual lunar 
lander. 
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Then, differentiating this equation, the tracking error dynamics 
is obtained in the following form.  
 

)()()()()( ttttt m deAεAε ++=&   (19) 

)}()({)( ttt m BKAAA −−=   (20a) 

)}()({)( ttt m Bsddd +−=   (20b) 

 
3.5 Lyapunov Direct Method  

Next, the Lyapunov direct method is utilized in order to 
guarantee the stability of the above-described tracking system:  
 

)()([)()()( 1 tttrtttV TT AQAPεε +=  

0)()( 2 ≥+ ttT dQd ,   0,, 21 ≥QQP . (21) 

Here, the matrices Q1 and Q2 are chosen as the diagonal 
matrices. Taking the time derivative of the V function, we 
obtain 
 

  )())(()( tttV T
mm

T εPAPAε +=&  

)}]()()(){([2 1 tttttr TT AQPεeA &++  

     )}()(){(2 2 tttT dQPεd &++ ,      (22) 
 
then, employing 
 

)()()()( 11 tttt TTT ARAQPεe −=+ &   (23) 

)()()( 22 ttt dRdQPε −=+ &   (24) 

011 ≥= TRR 022 ≥= TRR ; 
 
the V function becomes negative semi-definite. 
 

)]()([2)())(()( 1 tttrtttV TT
mm
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mm     (25b) 

Fig.3 Block diagram of the guidance and control system 
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Table 2 Initial conditions and parameters 
Initial Conditions 

Downrange[m] 
x(0)=0 

Altitude[m] 
z(0)=10000 

Path Angle [deg] 
90)0( =γ  State 

Variables Velocity [m/s] 
v(0)=100 

Attitude Angle [deg] 
θ(0)=90 

Pitch Rate [deg/s] 
q(0)=-0.934 

Gains k1(0)=8 k2(0)=8 k3(0)=4 k4(0)=7615 k5(0)=1795 
Signals s1(0)=0 s2(0)=0    

Parameter set value 
am1=8 am2=4 am3=4 am4=36 am5=8.49 Ideal Error 

Dynamics dm3=0 dm5=0    

Adjustment 
Law 
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From Eqs.(23) and (24), two laws for the gain adjustment and 
feedback signal generation are given as the form of the 
following differential equations: 
 

)](})()()([{)()( 1
11

1 ttttt TTT AQRAePεBBBK && ++−= −−

     (26) 

)]()}()({[)()( 2
1

2
1 tttt TT ddRPεQBBBs && −+= −− (27) 

 
   Figure 3 shows the block diagram of the proposed guidance 
and control system.  
 

4. NUMERICAL SIMULATIONS 
 
   Numerical simulation was performed to verify the validity 
of the proposed system. The initial altitude was changed from 
the altitude of 100 [m] used in Refs 1-5 to 10 [km].  The 
robustness against the partial thruster failure mode is also 
investigated. Table 2 shows the initial conditions and the 
parameter set used in the numerical simulation. 
 
4.1 Results of simulation without thrust failure 

Figure 5 shows the trajectory of the lunar lander. The actual 
trajectory coincides with the nominal (predefined) trajectory. 
Thus, it was confirmed that the proposed system had a good 
tracking ability. A minimal downrange error was also achieved 
compared with those of the previous studies. 

The altitude-velocity profile is indicated in Figure 6. As is 
evident in the figure, soft landing is also achieved. Here, the 
nominal velocity-altitude profile is calculated from the third 
row of Eq.(5).  

 Figures 7 and 8 present the time histories of the control 
inputs u1 (thrust-to-weight ratio) and u2 (pitching moment). 
Figures 9 and 10 show the time histories of the related angles 
and their rates. It is clear from these figures that the attitude 
angle and its rate are correctly controlled so as to coincide with 
the corresponding variables. That is, since the angle of attack 
and its rate remain zero, the gravity-turn descent is completed. 
  
4.2 Results of simulation with thrust failure 

Next, a thruster failure mode is simulated. As shown in 
Figure 4, one of the four clustered thrusters was assumed to 
break down at approximately 150[s] so as to allow only the 
longitudinal motion; finally, the actual thruster value decreases 
to 3/4 of the commanded value. Furthermore, an unbalanced 
moment due to the thruster failure is taken into account in the 
simulation in order to examine the validity of the attitude 
control law.  

The thruster failure mode is modeled by the following 
equations.  
 

( ) ( ) ( )comu t f t u t=    (28a) 

)150(tan)12/95.0(875.0)( 1 −−= − ttf  (28b) 

 
Figure 11 shows the time histories of the actual and 

commanded thrust-to-weight ratios. The system automatically 
regulates ucom against the thruster failure mode, in order to 
maintain u at the same level as that in Figure 7.  
 

 
Figure 12 shows the time history of the pitching moment 

with the thruster failure mode. The attitude control system 
generates a countermoment against the unbalanced moment. 
Thus, the lander maintains a suitable attitude under the 
proposed attitude control law. 
 

5. CONCLUSION 
   In this paper, a new trajectory and attitude control system 
for the lunar lander was presented. The simulation results 
revealed that the proposed system had a good convergence 
property and that a vertical soft landing was achieved 
accurately. It was also confirmed that the proposed control 
system could compensate for or overcome the lack of thrust 
and the unbalanced moment due to thruster failure.  
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