• 제목/요약/키워드: attack surface

검색결과 428건 처리시간 0.029초

DESCRIPTIONS OF ATTACK ANGLE AND IDEAL LIFT COEFFICIENT FOR VARIOUS AIRFOIL PROFILES IN WIND TURBINE BLADE

  • JAEGWI GO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권1호
    • /
    • pp.75-86
    • /
    • 2023
  • The angle of attack is highly sensitive to pitch point in the airfoil shape and the decline of pitch point value induces smaller angle of attack, which implies that airfoil profile possessing closer pitch point to the airfoil tip reacts more sensitively to upcoming wind. The method of conformal transformation functions is employed for airfoil profiles and airfoil surfaces are expressed with a trigonometric series form. Attack angle and ideal lift coefficient distributions are investigated for various airfoil profiles in wind turbine blade regarding conformal transformation and pitch point. The conformed angle function representing the surface angle of airfoil shape generates various attack angle distributions depending on the choice of surface angle function. Moreover, ideal attack angle and ideal lift coefficient are susceptible to the choice of airfoil profiles and uniform loading area. High ideal attack angle signifies high pliability to upcoming wind, and high ideal lift coefficient involves high possibility to generate larger electric energy. According to results obtained pitch point, airfoil shape, uniform loading area, and the conformed airfoil surface angle function are crucial factors in the determination of angle of attack.

A novel approach for analyzing the nuclear supply chain cyber-attack surface

  • Eggers, Shannon
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.879-887
    • /
    • 2021
  • The nuclear supply chain attack surface is a large, complex network of interconnected stakeholders and activities. The global economy has widened and deepened the supply chain, resulting in larger numbers of geographically dispersed locations and increased difficulty ensuring the authenticity and security of critical digital assets. Although the nuclear industry has made significant strides in securing facilities from cyber-attacks, the supply chain remains vulnerable. This paper discusses supply chain threats and vulnerabilities that are often overlooked in nuclear cyber supply chain risk analysis. A novel supply chain cyber-attack surface diagram is provided to assist with enumeration of risks and to examine the complex issues surrounding the requirements for securing hardware, firmware, software, and system information throughout the entire supply chain lifecycle. This supply chain cyber-attack surface diagram provides a dashboard that security practitioners and researchers can use to identify gaps in current cyber supply chain practices and develop new risk-informed, cyber supply chain tools and processes.

앙각을 가진 타원형 실린더 후류와 평판 경계층의 상호작용에 대한 연구 (Interaction between Turbulent Boundary Layer and Wake behind an Elliptic Cylinder at Incidence)

  • 최재호;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.465-471
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angel of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder according to the direction of the angle of attack.

  • PDF

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구 (Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence)

  • 최재호;이상준
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

3-D Optimal Evasion of Air-to-Surface Missiles against Proportionally Navigated Defense Missiles

  • Cho, Sung-Bong;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.514-518
    • /
    • 2003
  • In this paper, we investigate three dimensional optimal evasive maneuver patterns for air-to-surface attack missiles against proportionally navigated anti-air defense missiles. Interception error of the defense missile can be generated by evasive maneuver of the attack missile during the time of flight for which the defense missile intercepts the attack missile. Time varying weighted sum of the inverse of these interception errors forms a performance index to be minimized. Direct parameter optimization technique using CFSQP is adopted to get the attack missile's optimal evasive maneuver patterns according to parameter changes of both the attack missile and the defense missile such as maneuver limit and time constant of autopilot approximated by the 1st order lag system. The overall shape of resultant optimal evasive maneuver to enhance the survivability of air-to-surface missiles against proportionally navigated anti-air missiles is a kind of deformed barrel roll.

  • PDF

대함유도탄 공격유형에 따른 수상함 방어효과도 분석 연구 (A Study on the Defense Effectiveness of Surface Ships against diverse Anti-Surface Missile Attack Strategies)

  • 김재익;정영란;김현실;김철호;유찬우
    • 시스템엔지니어링학술지
    • /
    • 제6권1호
    • /
    • pp.33-39
    • /
    • 2010
  • Anti-surface missiles have been the most dangerous threat to the surface ships, therefore analyzing the defense effectiveness of surface ships against diverse anti-surface missiles attack strategies is very important to evaluate and anticipate the naval combat ship's abilities in terms of AAW (Anti-Air Warfare). In this paper, we don't study on the defense effectiveness of a ship against a missile, but focus on the defense effectiveness for surface ships against multiple missiles specialized in strategies of anti-surface missiles; ripple fire attack and simultaneous time on target attack (STOT). So, we conduct a variety of monte-carlo simulations with high-fidelity simulators, analyze the measure of defense effectiveness for the key factors of strategies and evaluate the effects and possible interactions of several factors through the analysis of the design of experiment (DOE).

  • PDF

세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구 (A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK)

  • 정성기;정재홍;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

주기적 통과 후류가 익형위 박리 유동에 미치는 영향 (Effect of periodic wakes on separated flows over a NACA0012 airfoil)

  • 이희강;박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1619-1624
    • /
    • 2004
  • Experimental study of separated flow over a NACA0012 airfoil is conducted at $Re=2{\times}10^5$ when periodic wakes pass over the airfoil. The wakes are periodically generated by circular cylinders upstream of the airfoil. The measurement of surface pressure and surface visualization at various angles of attack are carried out without and with passing wakes. Without passing wakes, a separation bubble at the leading edge of the suction surface is formed at an angle of attack, found from a local plateau in the streamwise pressure distribution and two distinct lines in the surface flow visualization. With passing wakes, however, the bubble disappears. Owing to passing wakes, the lift increases at high angle of attack and the angle of stall also increases.

  • PDF

Attack Surface Expansion through Decoy Trap for Protected Servers in Moving Target Defense

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.25-32
    • /
    • 2019
  • 본 논문에서는 보호대상 서버 네트워크에 디코이 트랩을 통한 공격 표면 확장의 적용 방법을 제안한다. 보호대상 서버 네트워크는 많은 수의 디코이들과 보호대상 서버로 구성되며, 각 보호대상 서버는 Hidden Tunner Networking이라는 네트워크 기반 이동 표적 방어 기법에 따라 IP 주소와 포트 번호를 변이한다. 이동 표적 방어는 공격을 막기 위하여 지속적으로 시스템의 공격 표면을 변경하는 사이버 보안에서의 새로운 접근방법이다. 공격 표면 확장은 공격을 막기 위해 디코이와 디코이 그룹을 활용하는 접근방법이다. 제안하는 방법에서는 공격자가 디코이 트랩에서 공격자의 모든 시간과 노력을 허비하도록 커스텀 체인과 RETURN 타켓을 사용하여 보호대상 서버의 NAT 테이블을 수정한다. 본 논문에서는 제안하는 방법이 적용되기 전과 후에 보호대상 서버 네트워크에서의 공격자 성공률을 수식으로 계산한다. 제안하는 방법은 보호대상 서버가 공격자에 의해 식별되고 공격당할 확률을 현저히 줄일 것으로 기대된다.