
 
1. INTRODUCTION 

 
Rapid development of recent technology of anti-air defense 

systems has menaced air-to-surface missiles’ survivability. For 
the enhancement of the survivability of air-to-surface missiles, 
we can consider a method to augmenting special evasive 
maneuver into the terminal homing phase. Evasive maneuver 
of air-to-surface missiles can be defined as a special maneuver 
not only to increase survivability but also to minimize terminal 
miss distance without a priori information of the parameters or 
flight states of the threats. 

The weaving motion[1] in two-dimensional space or the 
barrel roll maneuver[2] in three-dimensional can be a 
candidate for evasive maneuver. Then, are they optimal? If not, 
what kind of maneuver pattern is the best for evasion? In Ref. 
[3], an optimal evasive maneuver policy of anti-ship missiles 
against the CIWS(Close-In Weapon System) has been 
discussed, where the optimal evasive trajectories are 
characterized by a kind of barrel roll. However, it may not be 
the best for the case of homing threats.  

Based on the approach of Ref.[3], in this paper, we 
investigate three dimensional optimal evasive maneuver 
patterns for air-to-surface attack missiles against 
proportionally navigated anti-air defense missiles. The optimal 
control problem for evasive maneuver of attack missiles 
considered in this paper is to find an acceleration command 
which minimizes the performance index given by the time 
varying weighted sum of the inverse of an interception error of 
the defense missile with the terminal constraints of zero miss 
distances. Interception error of the defense missile during the 
entire engagement can be calculated from the homing loop 
adjoint [4] of the defense missile. It is assumed that both 
attack and defense missiles are the 1st order lag systems with 
different time constant. And we assume that only the attack 
missile has a command limit. In this paper, the direct input 
parameter optimization technique using CFSQP [5] is used to 
find the optimal solution. Optimization results show that 
optimal evasive trajectory also becomes a kind of the barrel 
roll whose shape varies according to the time constants of both 
missiles as well as navigation constant of the defense missile. 

The equations of motion of the air-to-surface attack missile 
and the interception error of the anti-air defense missile in 
three-dimensional space are formulated in section 2. Section 3 
deals with the optimal control problems and their numerical 
solutions for a typical engagement scenario. And section 4 is 
conclusion. 
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2. FORMULATION OF EQUATIONS OF MOTION 
AND INTERCEPTION ERRORS 

 
Let us consider the engagement scenario between a 

air-to-surface attack missile and a anti-air defense missile as 
shown in Fig. 1. In this scenario, it is assumed that the attack 
missile controls acceleration vector  normal to its velocity 
to guide to the target. On the other hand, the target 
continuously launches anti-air missiles to intercept the attack 
missile. 

mar

 
Equations of motion of the attack missile 

The equations of motion of the attack missile in the three 
dimensional space are given by 
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where  is denotes the distance of the attack missile 
from the target,  is the velocity of the attack missile. The 

guidance command vector 
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is defined in velocity frame as 
denoted in Fig. 2; 
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Fig. 1 Three dimensional engagement geometry between 

the attack missile and the defense missile 
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Fig. 2 Definition of guidance command vector 

 
The autopilot of the attack missile is assumed as the first order 
lag system so that the resultant acceleration is represented 
as 
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where  denotes the the time constant of the attack missile. 

Then,  is transformed into inertial reference frame such 
that 
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where V
IC is calculated by using azimuth mψ and elevation 

angle mγ of the flight path: 
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Interception error of the defense missile 

we assume that neither gravity nor aerodynamic forces 
affect the ballistics of the defense missiles. Then, the speed of 
the defense missile (d dv v=

r
)  remains in constant during the 

entire engagement. And we also assume the attack missile lies 
on the collision path so that it does not deviate much from the 
reference x-axis. Then, we approximate the interception time 
for the defense missile to intercept the attack missile as 
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where  denotes the closing velocity between the attack 
missile and the defense missile. For homing missiles, it is 
intuitively true that is an implicit function of time and has 
its maximum value at t  and then monotonically 
decreases until becoming 0.  

cv

τ
0=

System lag and command limit are the major factors to 
cause miss distance of the defense missile. In most cases, the 
command limit of the defense missile can be neglected since it 
is enough high compared to that of the attack missile. 
Therefore, the interception error of the defense missile is 
caused by the evasive maneuver of the attack missile during 
the interception time. We can calculate the interception error 
of the defense missile using the method of adjoint [4]. If the 
defense missile is guided by PNG(Proportional Navigation 
Guidance), the homing loop adjoint can be represented as 
shown in Fig. 3.  
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Fig. 3 Generalized homing loop adjoint of  
a defense missile 

 
The guidance system of the defense missile is represented in 
the time domain by . A single-lag guidance system can 
be represented by 
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where  is the effective time constant of the guidance 
system and 

dT
N ′  is the navigation constant. And  

denotes an adjoint signal of interest and calculated as 
( )H τ

 1( ) ( )[ ( ) ( )]H W x x H xτ δ τ τ
τ

= − − −∫ dx  (10) 

Converting from the time domain to the frequency domain 
using Laplace transform, we can express Eq. (10) as 

 ( ) ( )[1 ( )]dH s W s H s
ds

− = −  (11) 

Recall also that 
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−− = dH s  (12) 

Substitute Eq. (12) into Eq. (11) and take integral to obtain 
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Then, Eq. (13) becomes 
  (14) (1 ( ) exp ( )H s W s ds− = ∫ )
Now let us find the miss due to a step attack missile maneuver 
for a single lag guidance system. We can obtain new 
expression of Eq. (14) by substituting Eq. (9) into Eq. (14); 
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Then, from the Fig. 3, the interception error of the defense 
missile due to the evasive maneuver of the attack missile is 
given by 
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then, the interception error in time domain can be obtained by 



          
 

taking the inverse Laplace transform of Eq. (16); 
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where f  is the inverse Laplace transform of  and “ * ” 
denotes the convolution operator. And,  is the adjoint time 
of the defense missile and can be interpreted the time of flight 
for the defense missile to intercept the attack missile. 
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Finally, by substituting Eq. (20), (22) and (24) into Eq. 
(18), we can obtain the miss distances for adjoint time , 
which is caused by the evasive maneuver of the attack missile; 
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Note that the interception error  becomes 0 as  goes 
to 0 and if the attack missile does not maneuver, then the 
interception error is always zero. We also note that for 
non-zero  for , by using the convolution 
integral of Eqs. (25), (26) and (27) we can calculate the 
interception errors for the adjoint time without multiple run of 
nonlinear simulation. Here,  denotes the flight time of the 
attack missile to intercept the target. These analytic 
expressions on the interception error, then, can be used to 
assess the evasive performance or to evaluate the cost of 
survivability of the attack missile. In following section, an 
optimal control problem for evasive maneuver of the attack 

missile against the PNG guided defense missile will be 
discussed.  
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3. 3-D OPTIMAL EVASIVE MANEUVER 

PROBLEM 
 

Now, let us consider following optimal control problem; 
 

Find cur  which minimizes 
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subject to Eq. (1) 
with terminal constraint 
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and inequality input constraint 
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where denotes the maximum permissible acceleration 
command. Since the interception error converges to 0 as 
the defense missile approaches to the attack missile, the cost 
function becomes so large in the terminal flight phase that a 
lot of numerical effort to minimize the cost may be 
concentrated more on this phase than on initial/midcourse 
phase. For the stability of the solution finding algorithm, 

 is considered into the performance index to reduce the 
large weighting effect due to the inverse of the interception 
error in the terminal phase. The closed-form solutions of this 
optimal control problem might not be easily derived due to the 
nonlinearities included in the performance index and the 
inequality constraints. To find the policy of three dimensional 
evasive maneuver of the air-to-surface missile against 
proportionally navigated the anti-air missile, we should adopt 
numerical optimization techniques to solve the problem. This 
optimal control problem is converted into parameter 
optimization problem with unknown parameter vector 
composed of discretized control and flight time such that 
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Therefore, the number of unknown parameter is . 
As a tool for parameter optimization, CFSQP [5] which is an 
open code for constrained optimization problems based on 
sequential quadratic programming is used. Integration of 
equations of motion to evaluate the value of performance 
index and the violation of terminal constraints is performed by 
the 4th order Runge-Kutta method. During integration, the 
controls and are assumed to be linearly 
changed between adjacent nodes. 
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The initial conditions of engagement scenario between the 
attack missile and the defense missile are given as 
1) For the attack missile; 
At the beginning of the evasive maneuver, it is assumed that 
the attack missile lies on the near collision path to target so 
that the initial acceleration is very small. 
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Guidance command is highly limited and realized by the 1st 
order lag approximation; 
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1.0 ( )aT rad= s  
2) For the defense missile; 
We assume that the defense missile launches at the target and 
its initial velocity is more than twice when it is compared to 
that of the attack missile. It is also assumed that velocity of the 
defense missile does not vary during the entire engagement.  

[ ]0( ) 0   0   0   ( )T
dr t m=r  
r 700  ( )dv m=  s

Time constant of the defense missile is the same as the attack 
missile. 

1.0 ( )dT rad= s  
It is assumed that the defense missile has perfect measurement 
on the attack missile and no command limit. 

Based on the above engagement conditions, we investigate 
the three-dimensional optimal evasion of the attack missile 
and its evasive performance for the case of that the navigation 
constant of the defense missile is 3 and 4, i.e.,  and 

. Fig. 4 and 5 show the optimal trajectories of the 
attack missile to maximize its survivability for both navigation 
constants of the defense missile, respectively. Both trajectories 
have kinds of deformed barrel roll due to homing 
characteristics of the attack missile in the last part of the flight. 
The evasive maneuver of the attack missile for  is 
more radical and forms larger lateral displacement. Although 
lateral trajectory displacement is larger, the interception error 
for the defense missile with  is rather small as shown 
in Fig. 9 and 10. For both cases, the interception error 
approaches to zero as the attack missile approaches to the 
target. Performance index for both navigation constants is 
given as 

3N ′ =

N ′ =

4N ′ =

4

4N ′ =

3| 1.170 3NJ e′ = =  ,  4| 3.513 3NJ e′ = =  
From the optimization results, it is obvious that the 

survivability of the attack missile is weakened for the attack 
missile with higher navigation constant. In general, PNG 
shows that higher navigation constant is more effective for 
maneuvering targets. However, PNG with higher navigation 
constant tends to generate larger guidance command. Not 
considered in this paper, if the guidance command of the 
defense missile is limited, the interception error will be 
increased. In this case, we cannot assert that higher navigation 
constant of the defense missile always deteriorates the 
survivability of the attack missile. 

 
4. CONCLUSION 

 
In this paper, three-dimensional optimal evasive maneuver 

of air-to-surface attack missiles against proportionally 
navigated anti-air defense missiles are investigated. We use 
the homing loop adjoint of the defense missiles to generate the 
interception error of the defense missiles. And then we apply 
the direct input parameter optimization technique using 
CFSQP to minimize the performance index given by the time 
varying weighted sum of the inverse of the interception error. 
Numerical results for typical navigation constants of the 
defense missile show that the survivability of the attack 
missile is weakened as the navigation constant of the defense 
missile is increased. Optimal evasive trajectories of the attack 
missile are kinds of deformed barrel roll shape due to the 
homing characteristics.  

Optimization for various combinations of time constant of 
both attack and defense missile under the consideration of the 
command limit of the defense missile should be carried out as 
a further study. 
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Fig. 4. Optimal trajectory of the attack missile against the 

defense missile with PNG with  3N ′ =
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Fig. 5. Optimal trajectory of the attack missile against the 

defense missile with PNG with  4N ′ =
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Fig. 6. Yaw command histories of the attack missile  
against the defense missile with PNG 
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Fig. 7. Pitch command histories of the attack missile  

against the defense missile with PNG 
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Fig. 8 Projected acceleration patterns of the attack missile 

against the defense missile with PNG 
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Fig. 9 Projected interception errors of the defense missile 
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Fig. 10 Time history of the interception errors of 
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