• 제목/요약/키워드: atomic model

검색결과 1,378건 처리시간 0.029초

A modularized numerical framework for the process-based total system performance assessment of geological disposal systems

  • Kim, Jung-Woo;Jang, Hong;Lee, Dong Hyuk;Cho, Hyun Ho;Lee, Jaewon;Kim, Minjeong;Ju, Heejae
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2828-2839
    • /
    • 2022
  • This study developed a safety assessment tool for geological disposal systems called APro, a systemically integrated modeling system based on modularizing and coupling the processes which need to be considered in a geological disposal system. Thermal, hydraulic, chemical, canister failure, radionuclide release and transport processes were considered in the current version of APro. Each of the unit processes in APro consists of a single Default Module, and several Alternative Modules which can increase the flexibility of the model. As an initial stage of developing the modularization concept and modeling interface, the Default Modules of each unit process were described, with one Alternative Module of chemical process. The computation part of APro is mainly a MATLAB workspace controlling COMSOL and PHREEQC, which are coupled by an operator splitting scheme. The APro model domain is a stylized geological disposal system employing the Swedish disposal concept (KBS-3 type), but the repository layout can be freely adjusted. In order to show the applicability of APro to the total system performance assessment of geological disposal system, some sample simulations were conducted. From the results, it was confirmed that coupling of the thermal and hydraulic processes and coupling of the canister failure and the radionuclide release processes were well reflected in APro. In addition, the technical connectivity between COMSOL and PHREEQC was also confirmed.

Multiscale Modeling of Radiation Damage: Radiation Hardening of Pressure Vessel Steel

  • Kwon Junhyun;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.229-236
    • /
    • 2004
  • Radiation hardening is a multiscale phenomenon involving various processes over a wide range of time and length. We present a multiscale model for estimating the amount of radiation hardening in pressure vessel steel in the environment of a light water reactor. The model comprises two main parts: molecular dynamics (MD) simulation and a point defect cluster (PDC) model. The MD simulation was used to investigate the primary damage caused by displacement cascades. The PDC model mathematically formulates interactions between point defects and their clusters, which explains the evolution of microstructures. We then used a dislocation barrier model to calculate the hardening due to the PDCs. The key input for this multiscale model is a neutron spectrum at the inner surface of reactor pressure vessel steel of the Younggwang Nuclear Power Plant No.5. A combined calculation from the MD simulation and the PDC model provides a convenient tool for estimating the amount of radiation hardening.

Improvement of Liquid Droplet Entrainment Model in the COBRA-TF Code

  • Ha, Kwi-Seok;Jeong, Jae-Jun;Sim, Suk-Ku
    • Nuclear Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.181-193
    • /
    • 1998
  • The COBRA-TF liquid droplet entrainment models have been assessed and improved through various experiments. The COBRA-TF code uses the Wurtz entrainment model in the film mist flow regime and the mechanistic model based on the critical Weber number and critical vapor velocity in the hot wall flow regimes, respectively. The Wurtz model has been replaced with the modified Sugawara model. The assessment against the experiments by Hewitt, Keeys, Yanai, and Whalley showed the modified Sugawara model better predicts the steam-water as well as the air-water experiments for the film mist flow regime. For hot wall flow regime, the COBRA-TF entrainment model was modified using two methods, one with an increased critical Weber number and the other with the Yonomoto's critical vapor velocity model. The modified models were assessed using the FLECHT-SEASET bottom reflood tests. The results showed that the Yonomoto model best predicts the quenching time, whereas the local maximum rod temperature was not affected much.

  • PDF

농작물의 삼중수소 오염평가 모델 개발 및 실험검증 (Evaluation Model and Experimental Validation of Tritium in Agricultural Plant)

  • 강희석;금동권;이한수;전인;최용호;이창우
    • 방사성폐기물학회지
    • /
    • 제3권4호
    • /
    • pp.319-328
    • /
    • 2005
  • 본 논문에서 사고로 누출된 삼중수소에 의한 농작물 오염평가 모델을 제시한다. 본 논문에서 제시된 모델은 동적격실모델로써 작물의 성장 방정식을 도입한 것이 특징이며, 이로부터 삼중수소 피폭시 작물의 성장단계에 따른 오염 정도를 예측할 수 있다. 시스템은 크게 대기, 토양, 작물격실로 구성되며, 격실의 삼중수소 농도 변화는 비선형 상미분방정식으로 표현되므로 시간에 따른 각 격실의 삼중수소 농도가 계산된다. 모델의 검증을 위해 배추 및 무에 대한 삼중수소 피폭 실험을 수행하였다. 생육단계별 오염 효과를 조사하기 위해 각기 다른 생육단계에 있는 배추와 무를 독립적으로 HTO 증기에 노출시켰으며, 피폭 후 오염된 작물의 tissue free water tritium(TFWT) 및 organically bound tritium(OBT) 농도를 측정하였다. 측정된 작물 부위별 삼중수소 농도 데이터와 모델 예측 값은 대체로 잘 일치하였다.

  • PDF

Determining the adjusting bias in reactor pressure vessel embrittlement trend curve using Bayesian multilevel modelling

  • Gyeong-Geun Lee;Bong-Sang Lee;Min-Chul Kim;Jong-Min Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2844-2853
    • /
    • 2023
  • A sophisticated Bayesian multilevel model for estimating group bias was developed to improve the utility of the ASTM E900-15 embrittlement trend curve (ETC) to assess the conditions of nuclear power plants (NPPs). For multilevel model development, the Baseline 22 surveillance dataset was basically classified into groups based on the NPP name, product form, and notch orientation. By including the notch direction in the grouping criteria, the developed model could account for TTS differences among NPP groups with different notch orientations, which have not been considered in previous ETCs. The parameters of the multilevel model and biases of the NPP groups were calculated using the Markov Chain Monte Carlo method. As the number of data points within a group increased, the group bias approached the mean residual, resulting in reduced credible intervals of the mean, and vice versa. Even when the number of surveillance test data points was less than three, the multilevel model could estimate appropriate biases without overfitting. The model also allowed for a quantitative estimate of the changes in the bias and prediction interval that occurred as a result of adding more surveillance test data. The biases estimated through the multilevel model significantly improved the performance of E900-15.