• 제목/요약/키워드: atomic force microscope

검색결과 690건 처리시간 0.026초

원자힘현미경을 이용한 탄소나노튜브소자의 턴형 및 수리 (Modification and Repair of a Carbon Nanotube-based Device Using an Atomic Force Microscope)

  • 박지용;김용선;오영무
    • 한국진공학회지
    • /
    • 제16권1호
    • /
    • pp.33-39
    • /
    • 2007
  • 원자힘현미경(AFM)을 이용하여 탄소나노튜브소자에서 탄소나노튜브를 전기적 또는 기계적으로 조작함으로써 전기적 특성을 변형시키는 연구를 수행하였으며 이를 이용하여 탄소나노튜브의 절단 및 연결을 시연하였다. 조작과 동시에 AFM을 이용한 정전기힘측정법을 적용하여 탄소나노튜브의 절단 및 연결을 시각화할 수도 있음을 밝히고 이를 결합하여 본 연구에서는 AFM을 이용한 탄소나노튜브소자의 극소적인 변형 및 조작이 가능하다는 것을 보였다.

주사 현미경용 평면 스캐너 Part 2 : 정 · 동 특성 평가 (A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 2. Evaluation of Static and Dynamic Properties)

  • 이무연;권대갑;이동연
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1295-1302
    • /
    • 2005
  • This paper shows experimental evaluation results of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors as like explained in detail in Ref. (5). First, the fabrication methods were explained. Second, as the static Properties of the Planar scanner. we evaluated the maximum travel range & crosstalk. Also, we presented the correcting method for crosstalk using electric circuits finally. as the dynamic properties of the planar scanner, we evaluated the first resonant frequency. Also, we presented the actual AFM(atomic force microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that properties of the proposed planar scanner are well enough to be used in SPM applications like AFM.

원자 현미경 장비의 바닥 진동(정상 상태) 허용 기준 결정 (Determination of the Allowable Vibration Level of the Atomic Force Microscope Equipment)

  • 이동연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.161-164
    • /
    • 2000
  • Currently, Atomic Force Microscope(AFM) has been widely used to measure the surface topography of a sample by detecting interaction force between atoms on the sample and extremely sharp probe tip. The vertical resolution of AFM is mainly determined by external vibration noise. The resolution of AFM shows different values for the different environment, thus it is necessary to determine relationship between the criteria and the resolution of AFM regardless of environment. In this paper, we discuss the allowable level of floor vibration for AFM equipment at given resolution. The vibration criteria can be used as reference data to design mechanical structure and to analyze the structural dynamics of AFM equipment.

  • PDF

나노스케일 표면돌기 간의 미세접촉에 대한 해석 (Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy)

  • 안효석;장동영
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

SPM을 이용한 접촉조건 변화에 따른 미소응착 및 마찰특성에 관한 연구 (A study on the Nano adhesion and Friction at Different Contact Conditions using SPM)

  • 윤의성;박지현;양승호;공호성
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.191-197
    • /
    • 2001
  • Nano adhesion and friction characteristics between SPM(scanning electron microscope) tips and flat plates of different materials were experimentally studied. Tests were performed to measure adhesion and friction in AFM(atomic force microscope) and LFM(lateral force microscope) modes in different conditions of relative humidity. Three different Si$_3$N$_4$ tips (rdaii : 15nm, 22nm and 50 nm) and three different flat plates of Si-wafer(100), W-DLC(tungsten-incorporated diamond-like carbon) and DLC were used. Results generally showed that adhesion and friction increased with the tip radius, and W-DLC and DLC surfaces were superior to Si-wafer. But the adhesion force of Si-wafer showed non linearity with the tip radius while W-DLC and DLC surfaces showed good correlation to the “JKR model”. It was found that high adhesion force between Si-wafer and a large radius of tip was caused by a capillary action due to the condensed water.

OTS SAM의 미소 응착 특성에 관한 실험적 연구 (An Experimental Study on the Nano-adhesion of Octadecyltrichlorosilane SAM on the Si Surface)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.276-282
    • /
    • 2001
  • Nano adhesion between SPM (scanning probe microscope) tips and 075 (octadecyltrichlorosilane) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various conditions of relative humidity. OTS SAM was formed on Si-wafer (100) surfaces, and Si$_3$N$_4$ tips of different radius of curvature were used. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare Si-wafer. Results also showed that micro-adhesion force increased as the relative humidity and the tip radius of curvature increased. The main parameter for affecting the micro-adhesion was found absorbed humidity on the contact surface. These results were discussed with the JKR model and a capillary force caused by absorbed water.

초음파 원자 현미경을 이용한 재료 표면의 탄성 이미지화 (Elastic Imaging of Material Surface by Ultrasonic Atomic Force Microscopy)

  • 김정석;박태성;박익근;이승석;이창준
    • 비파괴검사학회지
    • /
    • 제29권4호
    • /
    • pp.293-298
    • /
    • 2009
  • 본 연구에서는 나노 표면층의 특성 평가를 위해 원자현미경에 초음파 특성을 결합하여 초음파 원자 현미경을 개발하였다. 초음파 원자 현미경은 기존의 나노 표면층에 대한 토포그래프 이미지뿐만 아니라 국부적인 이종부분으로 이루어진 표면에서의 물리적 특성차이에 의한 표면의 탄성 특성 이미지를 얻을 수 있다. 본 연구에서는 프로토타입의 UAFM 장치를 구성하고 이를 몇몇 응용분야에 적용하였다. 구축한 프로토타입의 UAFM 시스템을 이용하여 증착 실리콘 박막층과 냉간 압조용 강의 구상화 그리고 탄소 섬유 강화 복합재료의 표면에 대한 탄성 이미지를 성공적으로 얻을 수 있었다.