• Title/Summary/Keyword: atomic

Search Result 19,718, Processing Time 0.044 seconds

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after a Decoction - In Prescription of Digestive System - (전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 소화기계 약을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Objectives : To compare the contents of hazardous substances before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 6 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (SO2) were performed by Monier-Williams distillation method. Results : 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Samchulkunbi-tang (before decoction - Pb; 1.592, Cd; 0.155, As; 0.055 and Hg; 0.014, after decoction - Pb; 0.036, Cd; 0.002, As; not detected and Hg; 0.001), Yijin-tang (before decoction - Pb; 0.830, Cd; 0.077, As; 0.045 and Hg; 0.015, after decoction - Pb; 0.193, Cd; 0.010, As; not detected and Hg; 0.002), Banhabaikchulcheunma-tang (before decoction - Pb; 0.976, Cd; 0.164, As; 0.167 and Hg; 0.019, after decoction - Pb; 0.031, Cd; 0.003, As; 0.006 and Hg; 0.005), Pyungwi-san (before decoction - Pb; 2.162, Cd; 0.128, As; 0.061 and Hg; 0.018, after decoction - Pb; 0.080, Cd; 0.006, As; not detected and Hg; 0.005), Leejung-tang (before decoction - Pb; 1.480, Cd; 0.294, As; 0.034 and Hg; 0.012, after decoction - Pb; 0.064, Cd; 0.007, As; 0.007 and Hg; 0.002) and Kwibi-tang (before decoction - Pb; 0.907, Cd; 0.193, As; 0.085 and Hg; 0.020, after decoction - Pb; 0.072, Cd; 0.006, As; 0.004 and Hg; 0.002). 2. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Banhabaikchulcheunma-tang, Pyungwi-san, Leejung-tang and Kwibi-tang exhibited 3.5, 3.4, 3.8 and 12.4, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusions : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil

  • Nur Shahidah Abdul Rashid;Wooyong Um ;Ibrahim Ijang ;Kok Siong Khoo ;Bhupendra Kumar Singh;Nurul Syiffa Mahzan ;Syazwani Mohd Fadzil ;Nur Syamimi Diyana Rodzi ;Aina Shafinas Mohamad Nasir
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1460-1467
    • /
    • 2023
  • A robust approach was conducted to determining the absolute oral bioavailable (fab) fractions of 238U and 232Th in rats exposed to contaminated soil along with their hematotoxicity and nephrotoxicity. The soil sample is the International Atomic Energy Agency-312 (IAEA-312) certified reference material, whereas blood, bones, and kidneys of in vivo female Sprague-Dawley (SD) rats estimate 238U- and 232Th-fab fractions post-exposure. We predict the bioavailable concentration (Cab) and fab values of 238U and 232Th after acute soil ingestion. The blood 238U (0.750%) and 232Th (0.028%) reach their maximum fab values after 48 h. The 238U (fab: 0.169-0.652%) accumulates mostly in the kidney, whereas the 232Th (fab: 0.004-0.021%) accumulates primarily in the bone. Additionally, 238U is more bioavailable than 232Th. Post 48 h acute ingestion demonstrates noticeable histopathological and hematological alterations, implying that intake of 238U in co-contaminated soil can lead to erythrocytes and proximal tubules damage, whereas, 232Th intake can harm erythrocytes. Our study provides new directions for future research into the health implications of acute oral exposures to 238U and 232Th in co-contaminated soils. The findings offer significant insight into the utilization of in vivo SD rat testing to estimate 238U and 232Th bioavailability and toxicity in exposure assessment.

A Study for the Efficient Improvement Measures of Military EMP Protection Ability (국방 EMP 방호능력의 효율적 개선을 위한 방안 연구)

  • Jung, Seunghoon;An, Jae-Choon;Hwang, Yeung-Kyu;Jung, Hyun-Ju;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.219-227
    • /
    • 2017
  • Current military command information system uses electronic equipment a lot on which semiconductor chip is attached. It seems its' importance will increase more with latest information communication technology developing. Electronic equipment which uses electricity contains regular tolerance to high output electric signal. And EMC specification is the standardized of this electronic equipment's tolerance. On the other hand, the Institute of Atomic Energy Research has ever declared that high output electromagnetic pulse(EMP) will be broken out within the radius of 170Km when 10kt nuclear explosion occurs at an altitude of 40Km above Seoul. Then, the region suffer from the damage of most electronic equipments. Therefore, the norm to protect the influences in that case is defined by EMP protection specification. Most common electronic equipments meet the EMC norm, but there is no way to check whether they meet the EMP norm or not. That is because it is difficult to check whether they meet EMP protection norm and is on the matter of cost. Except inevitable cases, there is no review of checking whether they meet the norm or not. Considering the above, in this research, we speculate about the measures to improve military EMP protection ability by analyzing the EMC-EMP correlation and checking the EMP protection ability of general electronic equipment through the analysis.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Ball-milling Induced Changes in the Crystallinity of Quartz and Wear of Milling Media (볼 밀링에 의한 석영의 결정도 변화와 밀링 매체의 마모의 영향)

  • Jin Jung Kweon;Hoon Khim;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • Quartz (SiO2) is among the major rock-forming minerals in the earth's crust. The atomistic structures of SiO2 may evolve during diverse frictional processes. The reduction of friction of quartz-rock accompanied by its amorphization, hydration, and formation of silica gel provides mineralogical insights into earthquakes and related phenomena. Ball milling, together with rotary shear experiments have been useful to infer the atomic origins of such processes. In this study, optimal experimental conditions for ball milling for amorphization of SiO2 were determined by taking into account various process variables. The crystallinity of SiO2 gradually decreased and became amorphous as the ball milling time increased at a high milling speed. The degree of wear of the milling media and its effect on the amorphization of SiO2 were analyzed using distinct milling materials (zirconia, stainless steel). The amount of ball wear increased with increasing milling time. Furthermore, the worn stainless steel particles from balls tend to interact with amorphized SiO2 to form Si-O-Cr. These results aid in understanding the process of atomistic structural changes caused by ball milling of divserse materials with relatively high hardness, such as SiO2, and understanding various geological friction processes.

The effects of different metal posts, cements, and exposure parameters on cone-beam computed tomography artifacts

  • Ana Priscila Lira de Farias Freitas;Larissa Rangel Peixoto;Fernanda Clotilde Mariz Suassuna;Patricia Meira Bento;Ana Marly Araujo Maia Amorim;Karla Rovaris Silva;Renata Quirino de Almeida Barros;Andrea dos Anjos Pontual de Andrade Lima;Daniela Pita de Melo
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Purpose: This study assessed the intensity of artifacts produced by 2 metal posts, 2 cements, and different exposure parameters using 2 cone-beam computed tomography (CBCT) units. Materials and Methods: The sample was composed of 20 single-rooted premolars, divided into 4 groups: Ni-Cr/zinc phosphate, Ni-Cr/resin cement, Ag-Pd/zinc phosphate, and Ag-Pd/resin cement. Samples were scanned before and after post insertion and cementation using a CS9000 3D scanner with 4 exposure parameters (85/90 kV and 6.3/10 mA) and an i-CAT scanner with 120 kV and 5 mA. The presence of artifacts was assessed subjectively by 2 observers and objectively by a trained observer using ImageJ software. The Mann-Whitney, Wilcoxon, weighted kappa, and chi-square tests were used to assess data at a 95% confidence level(α<0.05). Results: In the subjective analyses, AgPd presented more hypodense and hyperdense lines than NiCr (P<0.05), and more hypodense halos were found using i-CAT (P<0.05) than using CS9000 3D. More hypodense halos, hypodense lines, and hyperdense lines were observed at 10 mA than at 6.3 mA (P<0.05). More hypodense halos were observed at 85 kV than at 90 kV (P<0.05). CS9000 3D presented more hypodense and hyperdense lines than i-CAT (P<0.05). In the objective analyses, AgPd presented higher percentages of hyperdense and hypodense artifacts than NiCr (P<0.05). Zinc phosphate cement presented higher hyperdense artifact percentages on CS9000 3D scans(P<0.05). CS9000 3D presented higher artifact percentages than i-CAT(P<0.05). Conclusion: High-atomic-number alloys, higher tube current, and lower tube voltage may increase the artifacts present in CBCT images.

Dietary sodium and potassium intake of Koreans estimated using 2 different sources of their contents in foods, Food & Nutrient Database and the Korean Total Diet Study : a comparative study (우리 국민의 나트륨 및 칼륨 섭취량 평가: 식품별 영양성분 함량 DB와 한국형 총 식이조사 기반 추정량 비교 연구)

  • Jee Yeon Lee;Sung Ok Kwon;Soo Hyun Lee;Min Jeong Seo;Gae Ho Lee;Cho-il Kim
    • Korean Journal of Community Nutrition
    • /
    • v.28 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Objectives: Based on the results from the Korean Total Diet Study (KTDS), the sodium (Na) and potassium (K) intake of Koreans were estimated and compared with intake estimates from the Food & Nutrient Database (FNDB), as in the Korea National Health and Nutrition Examination Survey (KNHANES) to verify the validity of these estimates. Methods: One hundred and thirty-four representative foods (RFs) covering 92.5% of the total food intake of Koreans were selected, and 228 pairs of corresponding 'RF x representative cooking method' were derived by reflecting the methods used mainly in terms of frequency and quantity in their cooking. RF samples were collected from three cities with a larger population size in three regions (nine cities) nationwide, and six composite samples were made for each RF, considering its regional and/or seasonal characteristics. One thousand three hundred and sixty-eight 'RF x representative cooking method' pair samples were prepared, and the Na and K contents were assessed using inductively coupled plasma atomic emission spectrometry (ICP-MS). The Na and K intake of the Korean population was estimated by linking the content with the food intake data from the 7th KNHANES. Results: The mean Na and K intake of Koreans were 2,807.4 mg and 2,335.0 mg per person per day, respectively. A comparison with the Na and K intake from KNHANES, including only RFs of KTDS, showed comparable results with less than 5% variation. While the contribution and ranking of food items to Na intake were similar between KNHANES and KTDS, there were differences in K intake. This was attributed to the large discrepancies in the K content of rice and coffee between KTDS results and the values in the 9th Revision of the National Food Composition Table used in KNHANES. Conclusions: The Na and K intake of Koreans estimated based on the KTDS, which performed nutrient analysis on samples prepared to a 'table-ready' state using foods of the representative collection, was similar and comparable with that of KNHANES. This supports the validity and usefulness of FNDB-based nutrient intake estimation at the population level. The list of nutrients studied in KTDS is expected to be expanded, allowing for intake estimation of nutrients with currently insufficient or absent information in the FNDBs in use.

Contents of heavy metals in marine fishes, sold in Seoul (서울에 유통 중인 해산 어류의 부위별 중금속 분석)

  • Hwang, Yong Ok;Park, Seog Gee
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.342-351
    • /
    • 2006
  • This study was carried out to estimate the contents of heavy metals in big marine 17 kinds of fishes (n=89) which had been sold at wholesale market in Seoul from January to December in 2005. The contents of mercury (Hg), lead (Pb), cadmium (Cd), chrome (Cr), copper (Cu) and arsenic (As) were measured by the mercury analyzer and atomic spectrophotometer (AAS) in the flesh, liver, and gill part. The values of heavy metals in fishes were as follows ($Mean{\pm}SD$, mg/kg). The average contents of heavy metals in the fishes were Hg $0.08{\pm}0.01mg/kg$, Pb $0.17{\pm}0.32mg/kg$, Cd $0.34{\pm}0.07mg/kg$, Cr $0.05{\pm}0.05mg/kg$, Cu $1.14{\pm}0.13mg/kg$, As $0.24{\pm}0.22mg/kg$. Of the heavy metals detected in 3 parts, liver was measured highly in the all heavy metals. Of the heavy metals detected in countries, Hg, Pb, and Cu were measured highly in New Zealand, Cd and As in Norway, Cr in Korea. The range of heavy metal contents in imported and domestic fishes are low level, except of mercury contents of imported Yellow porgy (n=2), compared with regulation value of anther nations and Korea. And the contents of heavy metal in the imported fishes are natural. By correlation coefficients between fish livers of all subjects, a significant correlation was found Hg (r=0.989, p<0.01), Pb (r=0.978, p<0.01), Cd (r=0.991, p<0.01), Cu (r=0.998, p<0.01), As (r=0.198, p<0.05) in fish livers and flesh.