• 제목/요약/키워드: atmospheric-pressure cold plasma

검색결과 16건 처리시간 0.022초

Curing of meat batter by indirect treatment of atmospheric pressure cold plasma

  • Jo, Kyung;Lee, Juri;Lim, Yubong;Hwang, Jaejun;Jung, Samooel
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.94-104
    • /
    • 2018
  • Nitrite is an essential additive for cured meat product. Plasma is ionized gas and reactive nitrogen species in plasma can be infused into meat batter and subsequently generate nitrites by reaction with water molecules after plasma treatment. However, the increase of nitrite in meat batter is limited with direct treatment of atmospheric pressure cold plasma because of the increase of meat batter temperature. Therefore, this study investigated the influence of indirect treatment of atmospheric pressure cold plasma on the physicochemical properties of meat batter. Meat batter was indirectly treated with plasma at 1.5 kW for 60 min. The pH of meat batter decreased while the temperature increased with plasma treatment time. The total aerobic bacterial count of meat batter was not affected by plasma treatment. The nitrite content of meat batter was increased to 377.68 mg/kg after 60 min of plasma treatment. The residual nitrite content of cooked meat batter also increased with plasma treatment time. The CIE $a^*$-value of cooked meat batter increased. As plasma treatment time increased, lipid oxidation tended to increase and protein oxidation significantly increased. According to these results, the indirect treatment of atmospheric pressure cold plasma can be used as a new curing method for replacing synthetic nitrite salts.

대기압 Ar/O2 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성평가 (The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma)

  • 이찬주;이상곤;박근환;김병민
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.354-361
    • /
    • 2008
  • Cold rolled steel sheet for automotive was treated by Ar/$O_2$ atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of $O_2$ gas. Results shows that the bonding strength of steel sheet treated in Ar/$O_2$ atmospheric pressure plasma was improved about 20% compared with untreated sheet.

Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

  • Haertel, Beate;von Woedtke, Thomas;Weltmann, Klaus-Dieter;Lindequist, Ulrike
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.477-490
    • /
    • 2014
  • Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma using Helium and Oxygen

  • Lee Kye-Nam;Paek Kwang-Hyun;Ju Won-Tae;Lee Yeon-Hee
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.269-275
    • /
    • 2006
  • Atmospheric-pressure cold plasma (APCP) using helium/oxygen was developed and tested as a suitable sterilization method in a clinical environment. The sterilizing effect of this method is not due to UV light, which is known to be the major sterilization factor of APCP, but instead results from the action of reactive oxygen radicals. Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae deposited on a nitrocellulose filter membrane or Bacillus subtilis spores deposited on polypropylene plates were exposed to helium/oxygen plasma generated with AC input power at 10 kHz, 6 kV. After Plasma treatment, nitrocellulose filter membranes were overlaid on fresh solid media and CFUs were counted after incubation overnight. D-values were 18 sec for E. coli, 19 sec for S. aureus, 1 min 55 sec for S. cerevisiae, and 14 min for B. subtilis spores. D-values of bacteria and yeast were dependent on the initial inoculation concentration, while the D-value of B. subtilis spores showed no correlation. When treated cells were observed with a scanning electron microscope, E. coli was more heavily damaged than S. aureus, S. cevevisiae exhibited peeling, and B. subtilis spores exhibited shrunken morphology. Results showed that APCP using helium/oxygen has many advantages as a sterilization method, especially in a clinical environment with conditions such as stable temperature, unlimited sample size, and no harmful gas production.

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri;Lee, Cheol Woo;Yong, Hae In;Lee, Hyun Jung;Jo, Cheorun;Jung, Samooel
    • 한국축산식품학회지
    • /
    • 제37권4호
    • /
    • pp.477-485
    • /
    • 2017
  • Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.

저온 대기압 플라즈마의 실내공기 중 곰팡이 생장억제 효과 (Inactivation of Indoor Airborne Fungi Using Cold Atmospheric Pressure Plasma)

  • 백남원;허성민;이일영
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.351-357
    • /
    • 2019
  • Objectives: The objectives of this study were to investigate fungal contamination in a 31-year old university building in Seoul, Korea, and to study the inactivation of fungi using cold atmospheric pressure plasma(CAP). Methods: To investigate the fungal contamination in a university building, air samples were collected from five locations in the building, including two study rooms, a storage room, a laboratory, and a basement. The sampling was performed in a dry season(February to April) and in a wet season(July). To study the inactivation efficacy of fungi by CAP, airborne fungal concentrations were measured before and after the operation of the CAP generator. Results: Humidity was an important factor affecting fungal growth. The airborne fungal concentrations determined in the wet season(July) were significantly higher than those determined in the dry season(February to April). In the basement, the values determined in the dry and wet season were 319 and $3,403CFU/m^3$, respectively. The inactivation efficiency of fungi by CAP was 83-90% over five to nine days of operation. Conclusions: The university building was highly contaminated by airborne fungi, especially in summer. It is concluded that humidity is an important factor affecting fungal growth and CAP is a highly useful technique for inactivation of indoor airborne fungi.

Decomposition of Biological Macromolecules by Plasma Generated with Helium and Oxygen

  • Kim Seong-Mi;Kim Jong-Il
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.466-471
    • /
    • 2006
  • In this study, we attempted to characterize the biomolecular effects of an atmospheric-pressure cold plasma (APCP) system which utilizes helium/oxygen $(He/O_2)$. APCP using $He/O_2$ generates a low level of UV while generating reactive oxygen radicals which probably serve as the primary factor in sterilization; these reactive oxygen radicals have the advantage of being capable to access the interiors of the structures of microbial cells. The damaging effects of plasma exposure on polypeptides, DNA, and enzyme proteins in the cell were assessed using biochemical methods.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

대기압 저온 플라스마에 의한 산화 주석 박막의 식각 (Dry etching of tin oxide thin films using an atmospheric pressure cold plasma)

  • 이봉주;히데오미코이누마
    • 한국진공학회지
    • /
    • 제10권4호
    • /
    • pp.411-415
    • /
    • 2001
  • 대기압 저온 플라스마를 사용하여 산화아연 박막의 건식 식각 가능성을 연구했다. 플라스마로부터 $H_\alpha^*$$CH_^*$ 라디컬 발생을 확인하였고, 라디컬 발생 능력은 광학 발광 스펙트럼 및 플라스마 임피던스 분석에 의해 캐소드 전극에 의존하는 것을 알았다. 식각능력은 플라스마 I-V커브에 의한 임피던스와 발광강도에 의해 계산되었다.

  • PDF

대기압 저온 플라스마를 이용한 산화막 및 고분자 재료의 표면개질 (Surface Modification of Conductive Oxide films and Polymer Materials Employing Atmospheric Cold Plasma Surface Modification of Conductive Oxide films and Polymer Materials Employing Atmospheric Cold Plasma)

  • 이봉주;이현규;김창석;이경섭;김형곤;장헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.32-34
    • /
    • 2001
  • we have quantitatively investigated the possibility of feeding oxygen radical in air environment. The oxygen radical generation from the plasma was verified and its efficiency was found to be dependent on the cathode material by the analysis with optical emission spectroscopy as well as by the quartz crystal micro-balance method.

  • PDF