Browse > Article

Decomposition of Biological Macromolecules by Plasma Generated with Helium and Oxygen  

Kim Seong-Mi (Department of Food and Microbial Technology, Seoul Women's University)
Kim Jong-Il (Department of Food and Microbial Technology, Seoul Women's University)
Publication Information
Journal of Microbiology / v.44, no.4, 2006 , pp. 466-471 More about this Journal
Abstract
In this study, we attempted to characterize the biomolecular effects of an atmospheric-pressure cold plasma (APCP) system which utilizes helium/oxygen $(He/O_2)$. APCP using $He/O_2$ generates a low level of UV while generating reactive oxygen radicals which probably serve as the primary factor in sterilization; these reactive oxygen radicals have the advantage of being capable to access the interiors of the structures of microbial cells. The damaging effects of plasma exposure on polypeptides, DNA, and enzyme proteins in the cell were assessed using biochemical methods.
Keywords
sterilization; atmospheric-pressure cold plasma; reactive oxygen species; biological macromolecules destruction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Jakubowski, W. and G. Bartosz. 2000. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 24, 757-760   DOI   ScienceOn
2 Leerungnawarat, P., H. Cho, S.J. Pearton, C.M. Zetterling, and M. Ostling. 2000. Effect of UV Light Irradiation on SiC Dry Etch Rates. J. Electronic Materials 29, 342–346   DOI   ScienceOn
3 Lieberman, M.A. and A.J. Lichtenberg. 1994. Principles of Plasma Discharges and Materials Processing, Wiley, New York, USA
4 Takeshita, K., J. Shibato, T. Sameshima, S. Fukunaga, S. Isobe, K. Arihara, and M. Itoh. 2003. Damage of yeast cells induced by pulsed light irradiation. Int. J. Food Microbiol. 85, 151-158   DOI   ScienceOn
5 Moisan, M., J. Barbeau, M.C. Crevier, J. Pelletier, N. Philip, and B. Saoudi. 2002. Plasma sterilization: Methods and mechanisms. Pure Appl. Chem. 74, 349-358   DOI   ScienceOn
6 Hieda, K., K. Suzuki, T. Hirono, M. Suzuki, and Y. Furusawa. 1994. Single- and double-strand breaks in pBR322 DNA by vacuum-UV from 8.3 to 20.7 eV. J. Radiat. Res. (Tokyo) 35, 104-111   DOI
7 Mogul, R., A. Bol'shakov, S.L. Chan, R.M. Stevens, B.N. Khare, M. Meyyappan, and J.D. Trent. 2003. Impact of Low-Temperature Plasmas on Deinococcus radiodurans and Biomolecules. Biotech. Prog. 19, 776-83   DOI   ScienceOn
8 Davies, K. J. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262, 9895-9901
9 Park, J.C., B.J. Park, D. Han, D.H. Lee, I. Lee, S.O. Hyun, M.S. Chun, K.H. Chung, M. Aihara, and K. Takatori. 2004. Fungal sterilization using microwave-induced argon plasma at atmospheric pressure. J. Microbiol. Biotechnol. 14, 188-192
10 Adler, S., M. Scherrer and F.D. Daschner. 1998. Costs of lowtemperature plasma sterilization compared with other sterilization methods. J. Hosp. Infect. 40, 125-134   DOI   ScienceOn
11 Peskin, A.V. 1997. Interaction of reactive oxygen species with DNA. A review. Biochemistry (Moscow) 62, 1341-1347
12 Lee, K., K. Paek, W.T. Ju, and Y. Lee. 2006. Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmosphericressure Cold Plasma using Helium and Oxygen. J. Microbiol. 44, 269-275   과학기술학회마을
13 Moisan, M., J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L. Yahia. 2001. Low-Temperature Sterilization Using Gas Plasmas: A Review of the Experiments and an Analysis of the InactivationMechanisms. Int. J. Pharmaceutics 226, 1-21   DOI   ScienceOn
14 Bol'shakov, A.A., B.A. Cruden, R. Mogul, M.V.V.S. Rao, S.P. Sharma, B.N. Khare, and M. Meyyappan. 2004. Radiorequency Oxygen Plasma as a Sterilization Source. AIAA J. 42, 823-832   DOI   ScienceOn
15 Sharma, S.P., B.A. Cruden, M. Rao, and A.A. Bolshakov. 2004. Analysis of emission data from $O_2$ plasmas used for microbe sterilization. J. Appl. Physics. 95, 3324-3333   DOI   ScienceOn