• Title/Summary/Keyword: atmospheric pressure plasma source

Search Result 36, Processing Time 0.034 seconds

The curing of meat batter by the plasma treated juice of red perilla

  • Lee, Juri;Jo, Kyung;Jung, Samooel
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.475-484
    • /
    • 2018
  • Nitrite is an essential additive for the manufacture of cured meat products. This study was conducted to investigate the curing effect of the plasma treated juice of red Perilla in meat batter. The nitrite content in the juice of red Perilla was increased by the indirect treatment of atmospheric pressure plasma, and the lyophilized powder of red Perilla juice contained 9,133 ppm of nitrite. A meat batter without a nitrite source was prepared as a negative control (NC), and the meat batters cured with sodium nitrite (PC), celery powder (CP), and the lyophilized powder of red Perilla juice treated with atmospheric pressure plasma (PTP) at 70 ppm level of nitrite were prepared. The PTP showed the highest pH and the lowest cooking loss among the treatments. There were no significant differences in the nitrosyl-hemochrome content in the cooked meat batters of the PC, CP and PTC. However, the PTP had a lower CIE $a^*$-value compared to the PC and CP. The malondialdehyde content in the cooked meat batters was significantly lower in the CP and PTP than in the NC while there was no significant difference between the NC and PC. Based on the results of this study, the plasma treated juice of red Perilla can be used as a new natural nitrite source for cured meat products.

Chemical Vapor Deposition of Inorganic Thin Films using Atmospheric Plasma : A Review of Research Trend (상압 플라즈마를 이용한 무기박막의 화학기상 증착법에 대한 연구동향)

  • Kim, Kyong Nam;Lee, Seung Min;Yeom, Geun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • In recent years, the cleaning and activation technology of surfaces using atmospheric plasma as well as the deposition technology for coating using atmospheric plasma have been demonstrated conclusively and drawn increasing industrial attention. Especially, due to the simplicity, the technology using atmospheric plasma enhanced chemical vapor deposition has been widely studied from many researchers. The plasma source type commonly used as the stabilization of diffuse glow discharges for atmospheric pressure plasma enhanced chemical vapor deposition pressure is the dielectric barrier discharge. In this review paper, some kinds of modified dielectric barrier discharge type will be presented. And, the characteristics of silicon based compound such as SiOx and SiNx deposited using atmospheric plasma enhanced chemical vapor system will be discussed.

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

A Study on Photoresist Stripping and Damage Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 감광제 제거 공정과 damage에 관한 연구)

  • Hwang, In-Uk;Yang, Seung-Kook;Song, Ho-Young;Park, Se-Geun;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.152-155
    • /
    • 2003
  • Ashing of photoresist was investigated in dielectric barrier discharges in atmospheric pressure by changing applied voltage, frequency, flow rate. we analyzed the plasma by Optical Emission Spectroscopy(OES) to monitor the variation of active oxygen species. Another new peaks of oxygen radical is observed by addition of argon gas. This may explain the increase in ashing rate with argon addition. With the results of Optical Emission Spectroscopy(OES), we can find the optimized ashing conditions. MIS capacitor for monitoring charging damage by the plasma was also studied. The results suggest the dielectric barrier discharges(DBD) can be an efficient, alternative Plasma source for general surface processing.

  • PDF

Atmospheric Plasma and Its Applications (대기압 플라즈마와 응용)

  • Uhm Han-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.117-138
    • /
    • 2006
  • Plasmas can be made by electrical discharge on earth. Most of the plasmas on earth have been generated in low pressure environments where the pressure is less than one millionth of the atmospheric pressure. However, there are many plasma applications which require high pressure plasmas. Therefore, scientists start research on plasma generation at high pressure to avoid use of expensive vacuum equipments. Large-volume inexpensive plasmas are needed in the areas of material processing, environmental protection and improvement, efficient energy source and applications, etc. We therefore developed new methods of plasma generations at high pressure and carried out research of applying these plasmas to high tech industries representing 21 century. These research fields will play pivotal roles in material, environmental and energy science and technology in future.

Quality Properties of Emulsion Sausages with Added the Atmospheric Pressure Plasma Treated Extract of Perilla frutescens Britton var. acuta Kudo (대기압 플라즈마 처리 자소엽 추출물 첨가 유화형 소시지의 품질 특성)

  • Lee, Seonmin;Jo, Kyung;Jung, Samooel
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.30 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • The objective of this study was to investigate the quality properties of sausages added with the atmospheric pressure plasma treated extract of Perilla frutescens Britton var. acuta Kudo (red perilla). The lyophilized powder of red perilla extract treated by atmospheric-pressure plasma contained 7.5 g kg-1 nitrite. Sausage samples were manufactured with the addition of sodium nitrite (Control), celery powder (Celery), or plasma-treated extract of red perilla (PTP) to obtain nitrite concentration of 70 mg kg-1. The residual nitrite content was the lowest in PTP during storage for 21 days at 4℃ (p<0.05). The total aerobic bacteria counts were higher in PTP than in Control and Celery during storage at 4℃ (p<0.05). Malondialdehyde content of sausages was significantly lower in PTP than in Control and Celery during storage (p<0.05). PTP showed the lowest L* value and the highest b* value among the tested sausage samples during storage (p<0.05). PTP received the low scores in all the sensory properties of sausages because of its inherent color and flavor. The results suggested that the plasma-treated extract of red perilla was an unsuitable natural nitrite source for cured meat products because of its adverse effect on sensory quality. However, natural nitrite source with increased nitrite content can be produced by the treatment of the natural plant extract with atmospheric-pressure plasma.

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment (상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상)

  • Kim, Taehyeon;Park, Woosang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.