• Title/Summary/Keyword: atmospheric pressure plasma

Search Result 340, Processing Time 0.029 seconds

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • Song, Jin-Ho;Seok, Jae-Gwon;Yeo, Chang-Su;Lee, Gwan-Ho;Song, Jong-Han;Sin, Sang-Won;Choe, Jin-Mun;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

Effect of Hydrogen in ITO(Indium Tin Oxide) Thin Films Etching by Low Temperature Plasma at Atmospheric Pressure (대기압 저온 플라스마에 의한 ITO(Indium Tin Oxide)박막 식각의 수소(H$_2$)효과)

  • Lee, Bong-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.12-16
    • /
    • 2002
  • It is confirmed that the ITO(Indium Tin Oxide) thin films can be etched by low-temperature plasma at atmospheric pressure. The etching happened deepest at a hydrogen flow rate of 4 sccm, and the etch rate was 120 /min. The etching speed corresponded to the H$\alpha$* emission intensity The etching mechanism of the ITO thin films is as follows; thin films were reduced by H$\alpha$*, and the metal compound residues were detached from the substrate by reacting on the CH* The etching was started after etching time of initial 50 sec and above the threshold temperature of 145$^{\circ}C$. The activation energy of 0.16 eV(3.75 Kcal/mole) was obtained from the Arrehenius plots.

Room-Temperature Luminescence from Ion Beam or Atmospheric Pressure Plasma-Treated SrTiO3

  • Song, J.H.;Choi, J.M.;Cho, M.H.;Choi, E.J.;Kim, J.;Song, J.H.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.261-264
    • /
    • 2014
  • $SrTiO_3$ (STO) single crystal irradiated with a 3-MeV proton beam exhibits blue and green mixed luminescence. However, the same proton beam when used to irradiate STO with a very thin layer of deposited Pt does not show any luminescence. This Pt layer prevents any damage which may otherwise be caused by arcing, which stems from the accumulated surface voltage of tens of kV due to the charge induced by secondary electrons on the surface of the insulator during the ion beam irradiation process. Hence, the luminescence of ion-irradiated STO originates from the modification of the STO surface layer caused by arcing rather than from any direct ion beam irradiation effect. STO treated with atmospheric-pressure plasma, a simple and cost-effective method, also exhibits the same type of blue and green mixed luminescence as STO treated with an ion beam, as the plasma also creates a layer of surface damage due to arcing.

Activation of melanogenesis by non-thermal atmospheric pressure plasma

  • Ali, Anser;Kumar, Naresh;Kumar, Ajeet;Rhee, Prof. Myungchull;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.211.1-211.1
    • /
    • 2016
  • Several reports have demonstrated the wide range of nonthermal plasma applications in biomedical field including cancers, diabetics, wound healing and cosmetics. Recently, it has been shown that plasma is able to modulate the p38 MAPK and JUN level in cells which has a crucial role in melanin synthesis and skin pigmentation. Therefore we investigated the effect of plasma on melanogenesis in-vitro using melanoma (B16F10) cells and in-vivo using mouse and zebra fish. To investigate the mechanism of plasma action, plasma device characteristics were measured, reactive species inside and outside the cells were detected, and western blot was performed to find the signaling pathway involved in melanin activation in-vitro and in-vivo. This is the first report presenting the role of nonthermal plasma for melanogenesis which provides a new perspective of plasma in the field of dermatology.

  • PDF

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

Quality Properties of Emulsion Sausages with Added the Atmospheric Pressure Plasma Treated Extract of Perilla frutescens Britton var. acuta Kudo (대기압 플라즈마 처리 자소엽 추출물 첨가 유화형 소시지의 품질 특성)

  • Lee, Seonmin;Jo, Kyung;Jung, Samooel
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.30 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • The objective of this study was to investigate the quality properties of sausages added with the atmospheric pressure plasma treated extract of Perilla frutescens Britton var. acuta Kudo (red perilla). The lyophilized powder of red perilla extract treated by atmospheric-pressure plasma contained 7.5 g kg-1 nitrite. Sausage samples were manufactured with the addition of sodium nitrite (Control), celery powder (Celery), or plasma-treated extract of red perilla (PTP) to obtain nitrite concentration of 70 mg kg-1. The residual nitrite content was the lowest in PTP during storage for 21 days at 4℃ (p<0.05). The total aerobic bacteria counts were higher in PTP than in Control and Celery during storage at 4℃ (p<0.05). Malondialdehyde content of sausages was significantly lower in PTP than in Control and Celery during storage (p<0.05). PTP showed the lowest L* value and the highest b* value among the tested sausage samples during storage (p<0.05). PTP received the low scores in all the sensory properties of sausages because of its inherent color and flavor. The results suggested that the plasma-treated extract of red perilla was an unsuitable natural nitrite source for cured meat products because of its adverse effect on sensory quality. However, natural nitrite source with increased nitrite content can be produced by the treatment of the natural plant extract with atmospheric-pressure plasma.

Surface Treatment of Polypropylene using a Large Area Atmospheric Pressure Plasma-solution System (대면적 대기압 플라즈마-용액 시스템을 이용한 폴리프로필렌 표면 처리)

  • Tran, Chinh Quoc;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.271-276
    • /
    • 2011
  • We investigated the possibility of introducing functional groups without damaging surface polymeric chains through the treatment of a polypropylene(PP) film immersed in liquid phase using an atmospheric pressure plasma with large area. The ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate: $[BMIM]^{+}[BF_{4}]^{-}$- was successfully applied for generating stable plasmas in the plasma-solution system. We successfully treated the film surface using the plasma-solution system and confirmed various oxygen-containing functional groups formed on the surface of PP film. The surface free energy of PP film was increased with increasing plasma treatment time and power. It also showed a maximum value at the PP sample treated in the ionic liquid solution of 1.5 M. ATR-FTIR analyses revealed the increase of various carbonyl groups(1,726 $cm^{-1}$, 1,643 $cm^{-1}$) and OH groups$(3,100{\sim}3,500\;cm^{-1})$ after plasma treatment of PP film, and XPS also supported the ATR-FTIR result.

Atmospheric-Pressure Plasma Treatment of Ethylene-Vinyl Acetate (EVA) to Enhance Adhesion Energy between EVA and Polyurethane (상압 플라즈마 표면처리에 따른 Ethylene-Vinyl Acetate (EVA)의 표면개질 및 Polyurethane과의 접착력 증진)

  • Kim, Jeong-Soon;Uhm, Han-S;Kim, Hyoung-Suk
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • Plasma treatment is frequently used to increase surface functionality and surface activity. It enables to improve various surface properties such as catalytic selectivity, printability, and interfacial adhesion between various materials. Surface or the ethylene-vinyl acetate (EVA) is exposed under an atmospheric pressure plasma torch (APPT), generated by dielectric barrier discharge (DBD), and the treated surfaces are systemically investigated. Argon, air, and oxygen are used as a processing gas. Properties of the treated EVA surfaces are investigated by the zeta-potential measurements and surface free energies. It is shown that the plasma treatment leads to a drastic increase of surface functional groups of EVA, as the increase of its adhesion energy ($G_{IC}$). Therefore, it is concluded that the APPT process is an effective means to improve adhesion of EVA and polyurethane (PU).

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF