• 제목/요약/키워드: atmospheric pressure

검색결과 1,698건 처리시간 0.037초

Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

  • Sung, Su-Jin;Huh, Jung-Bo;Yun, Mi-Jung;Chang, Brian Myung W.;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권1호
    • /
    • pp.2-8
    • /
    • 2013
  • PURPOSE. Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS. After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (${\alpha}$=0.05). RESULTS. The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION. The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer.

低氣壓이 흰쥐의 血淸 Glutamic Oxaloacetic Transaminase 및 Lactic Dehydrogenase 活性에 미치는 影響 (Effect of Low Atmospheric Pressure on Serum Glutamic Oxaloacetic Transaminase and Lactic Dehydrogenase Activities of Rats)

  • Teresita E. Masancay;Nam, Sang-Yul
    • 한국동물학회지
    • /
    • 제18권3호
    • /
    • pp.147-156
    • /
    • 1975
  • 成熟한 Sprague-Dawley 系 雄性 흰쥐를 對照群(760 mmHg)과 低氣壓群인 500 mmHg 와 380 mmHg의 兩實驗群으로 나누어 15日間(1日當 1時間) 曝露시켜, 低氣壓이 血淸 glutamic oxaloacetic transaminase(GOT) 및 血淸 lactic dehydrogenase(LDH) 活性에 미치는 影響을 考察하였다. 血淸 GOT 및 LDH 含量은 兩群 共히 對照群에 比하여 顯著한 變化를 招來하였으며, 특히 GOT는 初期에 減少되고, 後期에 恒定持續性을 나타내어 對照群의 값에 近接하는 傾向이 나타났으며, 한편 LDH의 含量은 初期에 增加하고 後期에는 若干의 減少傾向이 나타났다. 一般的으로 이러한 變化는 흰쥐가 低氣壓의 曝露에 一時的인 恒定持續性을 나타내는 것을 보여주며 酵素의 含量의 變化는 低氣壓의 强度와 順化期間에 따라 다르며, 一般的으로 380 mmHg群은 500 mmHg群에 比하여 顯著한 變化相을 가져오는 것으로 思料된다.

  • PDF

Effects of Temperature and Pressure on the Breakdown Characteristics of Liquid Nitrogen

  • Baek, Seung-Myeong;Joung, Jong-Man;Kim, Sang-Hyun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.171-176
    • /
    • 2003
  • For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of both liquid nitrogen (L$N_2$) and subcooled liquid nitrogen (SL$N_2$) are essential. To achieve SL$N_2$ at atmospheric pressure, cryostat was designed and constructed. By pumping up the L$N_2$ in the outer dewar, the temperature of L$N_2$ in the inner dewar at atmospheric pressure can be controlled. The breakdown characteristics of L$N_2$ in quasi-uniform and non-uniform electrical fields for temperatures ranging from 77 K to 65 K at atmospheric pressure and pressure ranging from 0.1 to 0.5 MPa were investigated experimentally. The experimental data suggested that the breakdown voltage (BDV) of L$N_2$ is both highly temperature and pressure dependent. We also carried out statistical analysis of the experimental results using the Weibull distribution. The Weibull shape parameter m for the sphere-to-plane electrodes in SL$N_2$ was estimated to be 11 to 18.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

상압 플라즈마를 이용한 무기박막의 화학기상 증착법에 대한 연구동향 (Chemical Vapor Deposition of Inorganic Thin Films using Atmospheric Plasma : A Review of Research Trend)

  • 김경남;이승민;염근영
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.245-252
    • /
    • 2015
  • In recent years, the cleaning and activation technology of surfaces using atmospheric plasma as well as the deposition technology for coating using atmospheric plasma have been demonstrated conclusively and drawn increasing industrial attention. Especially, due to the simplicity, the technology using atmospheric plasma enhanced chemical vapor deposition has been widely studied from many researchers. The plasma source type commonly used as the stabilization of diffuse glow discharges for atmospheric pressure plasma enhanced chemical vapor deposition pressure is the dielectric barrier discharge. In this review paper, some kinds of modified dielectric barrier discharge type will be presented. And, the characteristics of silicon based compound such as SiOx and SiNx deposited using atmospheric plasma enhanced chemical vapor system will be discussed.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

Influence of atmospheric pressure plasma on the melanogenesis in melanoma cells

  • Ali, Anser;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.161.2-161.2
    • /
    • 2015
  • Melanin is a black pigment, responsible for hair and skin color. In order to find the melanin stimulatory technique which prove useful for a gray and a white hair-preventive agent or tanning agent, we developed atmospheric pressure plasma jet (APPJ) and tested for tyrosinase activity and melanin production in melanoma (B16F10) cells in vitro. We found plasma dose dependent increase in melanin production. To explore the contributing mechanism in melanin synthesis, intracellular reactive oxygen species (ROS) and MAP kinase signaling pathways were studied. Furthermore, the development of plasma technology for melanin synthesis and planning for in-vivo future studies will be discussed.

  • PDF

Ion Electrical and Optical Diagnostics of an Atmospheric Pressure Plasma Jet

  • Ha, Chang Seung;Shin, Jichul;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제24권1호
    • /
    • pp.16-21
    • /
    • 2015
  • The characteristics of an atmospheric pressure plasma jet (APPJ) in He discharge are measured with electrical and optical diagnostics methods. The discharge phenomenon in one cycle of the APPJ was diagnosed using intensified charge coupled device (ICCD) imaging. The gate mode images show that the propagation of plasma bullets happens only when the applied voltage on the inner conductor is positive. Moreover, the Schlieren image of the plasma jet shows that the laminar flow is changed into a turbulent flow when the plasma jet is turned on, especially when the gas flow rate increases.

상압 저온 플라즈마 전처리한 폴리아미드계 직물의 색농도 (Color Depth of Polyamide Fabrics Pretreated with Low-Temperature Plasma under Atmospheric Pressure)

  • 이문철
    • 한국염색가공학회지
    • /
    • 제5권2호
    • /
    • pp.134-138
    • /
    • 1993
  • Wool, silk and nylon 6 fabrics were treated with low-temperature plasma under atmospheric pressure of acetone/argon or helium/argon for 30 and 180 sec, and then dyed with leveling type acid dye, C.I. Acid Red 18 and milling type acid dye, C.I. Acid Blue 83. In spite of short time of the plasma treatment for thirty seconds, the color depth of wool fabrics was increased remarkably with both of the plasma gases, aceton/argon or helium/argon and with the kinds of dyes i.e., levelin type or milling type. But the atmosperic low-temperature plasmas did not increase the depth of silk and nylon 6 fabrics dyed with both of the acid dyes regardless of the teated time and plasma gases. It seems that low-temperature plasma by atmospheric-pressure discharge is effective for improvement of dyeing of wools as is the same way with the low-temperature plasma by glow discharge. The kinds of plasma gases and treated time did not influnce the depth of wool fabric pretreted with the atmosperic low-temperature plasmas.

  • PDF