• Title/Summary/Keyword: atmospheric flow field

Search Result 133, Processing Time 0.025 seconds

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Numerical Simulation for Diffusion and Movement of Air Pollutants in Atmospheric Flow Coastal Urban Region (연안도시지역의 대기유동장에서 대기오염물질의 확산과 이동에 관한 수치모의)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.437-449
    • /
    • 1997
  • To predict diffusion and movement of k pollutants In coastal urban region a numerical simulation shouts be consider atmospheric flow field with land-sea breeze, mountain-valley wand and urban effects. In this study we used Lagrangian [article dispersion method In the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the Pollutants emoted from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the One mesh 914 (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and wale air pollutants exhausted from Sasang moved Into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.

  • PDF

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Numerical Simulation of Flow Field and Air Pollutatnts Concentration in Kwangyang Bay (광양만권의 유동장 및 대기오염농도예측)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.397-402
    • /
    • 2000
  • Numerical simulation model using nesting method and considering topographic features was developed to predict atmospheric environments atmospheric flow temperature and diffusion of air pollutants in Kwangyang bay where having complex areas of point sources Korea. In addition developed simulation model was used tracing of spreading range of pollutants when a gas leaks suddenly from Yeo-cheon industrial complex. by comparing the measured and calculated data on atmospheric flow temperature and diffusion of air pollutants the results showed that this model can be well applied and complicated topography affected the diffusion of air pollutants.

  • PDF

Study on Electrohydrodynamic Analysis of Cylinder Type ESP (원통형 전기집진기의 전기유체역학적 해석에 관한 연구)

  • 조용수;여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.243-254
    • /
    • 1996
  • The main purpose of this study is to investigate the collection efficiency characteristics of a cylindrical ESP. To do that, it is necessary to analyze the electric field, gas flow field, and mechanism of particle movement by numerical simulation based on EHD model. For a gas flow field, Navier-Stokes equation involving the electric source term was solved by SIMPLE algorithm. In case of the electric field, the current continuity and electric field equations were solved by S.O.R. method. The analysis of particle movement was performed on the basis of PSI-CELL model from the Lagrangian viewpoint. The results showed that the influence on the gas flow field by the electric field is almost negligible in a cylindrical ESP. The particle drift velocity $V_P$ toward the collection surface is increased continuously by the electrostatic force due to the rise of particle charge as the particle is moving to the flow direction and the particle size becomes larger. The collection efficiency is to quitely higher with the increase of applied voltage for the same particle size, while becomes smaller as the inlet velocity is increased.

  • PDF

Development of a New E-$\varepsilon$ Turbulence Model for Analysing the Air Flow Field within an Urban Street Canyon (도시협곡내 유동장 해석을 위한 새로운 E-$\varepsilon$ 난류 모델의 개발)

  • 정상진;박옥현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • A new E-$\varepsilon$ turbulence numerical model is proposed for analysing the turbulent air flow field within are urban street canyon. In this model the equations of eddy viscosity and energy dissipation ae reformed by considering the Kolmogorov time scale and streamline curvature effect. Application results of the new E-$\varepsilon$ model have been compared with those of standard E-$\varepsilon$ model and Yang and Shih's one, which are commonly used ones in engineering fields, and with field experiment results of DePaul and Sheih. The new model appears to be generally superior to other both models in the prediction of an air flow field within street canyon.

  • PDF

A Numerical Study of a Effect of the Uniform Flow in Horizontal Convection (일반류가 수평대류에 미치는 영향에 관한 수치연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.349-360
    • /
    • 1998
  • Effects of uniform flow on a two-dimensional mesoscale horizontal convection were investigated by using the vorticity and thermodynamic equations. For thins purpose, We simulated properties of a thermal convection m a stably stratified Boussinesq flued caused by partial heating at the center of a lower boundary If we don't consider effects of the uniform flow, the convection takes the form of aidsymmetrlc with respect to the z-alds. But when uniform flow Is strong, velocity field and temperature field consist of a sin91e cell structure which spreads upstream side of the partial heating area. The flow pattern for strong uniform flows takes the form of positive temperatue near the ground and negative temperature perturbation soft over the partial heating area, and downward motion directly over the upwind portion of the partial heating area and upward motion on the downstream side. The downstream edge of the upstream cell Is shifted in the downstream direction with the Increase of uniform flow almost linearly.

  • PDF

A Study on the Effect of the Atmospheric Pressure in the Gas Flow Measurement (대기압이 가스유량측정에 미치는 영향에 관한 연구)

  • Chung, Jong-Tae;Ha, Young-Cheol;Lee, Cheol-Gu;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.363-369
    • /
    • 2002
  • Orifice meter is the most widely used flowmeter in custody transfer between KOGAS and city gas companies. Absolute pressure value is needed to calculate the gas flow of orifice metering system, but the gauge pressure transmitters are mainly used in the field. In case that the gauge pressure transmitters are used, the fixed value as standard atmospheric pressure(101.325kPa) is applied for the absolute pressure value. The real, local atmospheric pressures of each metering station are different from the standard condition as the altitude and weather conditions. In this study the flow calculation errors were quantitatively analyzed through examining the atmospheric pressures of 50 stations of KOGAS. The data for analysis are such like the time data of supplied gas amount, the altitude of each metering station, the time data of atmospheric pressures and altitudes of each weather observatory. The results showed that the local atmospheric pressures were different from the standard value and the gas flow calculation errors were distributed between $-0.024\%{\~}0.025\%$ based on the supplied gas amount in the year 1999 and 2000.

  • PDF

Atmospheric Environment Prediction to Consider SST and Vegetation Effect in Coastal Urban Region (해수면온도와 식생효과를 고려한 연안도시지역의 대기환경예측)

  • Ji, Hyo-Eun;Lee, Hwa-Woon;Won, Gyeong-Mee
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.375-388
    • /
    • 2009
  • Numerical simulation is essential to indicate the flow of the atmosphere in the region with a complicated topography which consists of many mountains in the inland while it is neighboring the seashore. Such complicated topography produces land and sea breeze as the mesoscale phenomenon of meteorology which results from the effect of the sea and inland. In the mesoscale simulation examines, the change of the temperature in relation to the one of the sea surface for the boundary condition and, in the inland, the interaction between the atmosphere and land surface reflecting the characteristic of the land surface. This research developed and simulated PNULSM to reflect both the SST and vegetation effect as a bottom boundary for detailed meteorological numerical simulation in coastal urban area. The result from four experiments performed according to this protocol revealed the change of temperature field and wind field depending on each effect. Therefore, the lower level of establishment of bottom boundary suitable for the characteristic of the region is necessary to figure out the atmospheric flow more precisely, and if the characteristic of the surface is improved to more realistic conditions, it will facilitate the simulation of regional environment.

An Analysis of Wind Field around the Air Quality Monitoring Station in the Urban Area by Using the Envi-met Model (Envi-met 모델을 이용한 도심지역 대기오염측정망 주변의 바람장 분석)

  • Kim, Min-Kyoung;Lee, Hwa Woon;Dou, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.941-952
    • /
    • 2009
  • The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.