• Title/Summary/Keyword: atmospheric chemistry

Search Result 454, Processing Time 0.038 seconds

Refined numerical simulation in wind resource assessment

  • Cheng, Xue-Ling;Li, Jun;Hu, Fei;Xu, Jingjing;Zhu, Rong
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • A coupled model system for Wind Resource Assessment (WRA) was studied. Using a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, global-scale data were downscaled to the inner nested grid scale (typically a few kilometers), and then through the coupling Computational Fluid Dynamics (CFD) mode, FLUENT. High-resolution results (50 m in the horizontal direction; 10 m in the vertical direction below 150 m) of the wind speed distribution data and ultimately refined wind farm information, were obtained. The refined WRF/FLUENT system was then applied to assess the wind resource over complex terrain in the northern Poyang Lake region. The results showed that the approach is viable for the assessment of wind energy.

The Vertical Distribution Patterns of Long Range Transported SO2 in Korea Peninsula (한반도 서해상으로 장거리 이동하는 SO2의 농도 및 연직분포 특징)

  • Han, J.S.;Ahn, J.Y.;Hong, Y.D.;Kong, B.J.;Lee, S.J.;Sunwoo, Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.671-683
    • /
    • 2004
  • This study was carried out to understand long-range transport of $SO_2$ using aircraft measurements for the identification of it's horizontal and vertical concentration and distribution pattern. Thirteen missions of aircraft measurements have been done around 37$^{\circ}$00'/124$^{\circ}$30' from October 1997 to November 2001. Concentrations of $SO_2$ was 1.5~2.0 ppb in the below mixing layer, 0.6~1.1 ppb in the above mixing layer. $SO_2$ was found to be relatively higher than marine background level, 0.08~0.2ppb, indicating the western coast being influenced by long-range transport except for the summer season. The vertical distribution of $SO_2$ was classified into 3 groups using its vertical sounding and meteorology pattern; the first is linear decay pattern, the second is exponential decay pattern, and the last is gaussian distribution pattern in the below mixing layer, 2 patterns of linear decay and gaussian distribution patterns in the upper layer. It is founded that vertical distribution pattern is strongly dependent on meteorological condition, for example atmospheric stability and predominant air flow.

Determination of Urban Surface Aerodynamic Characteristics Using Marquardt Method

  • Zhang, Ning;Jiang, Weimei;Gao, Zhiqiu;Hu, Fei;Peng, Zhen
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.281-283
    • /
    • 2009
  • Marquardt method is used to estimate the aerodynamic parameters in urban area of Beijing City, China, including displacement length (d), roughness length ($z_0$) and friction velocity (u*) and drag coefficient. The surface drag coefficient defined as the ratio between friction velocity and mean wind speed is 0.125 in our research, which is close to typical urban area value. The averaged d and $z_0$ are 1.2 m and 7.6 m. d and $z_0$ change with direction because of the surface heterogeneity over urban surface and reach their maximum values at S-SW sector, this tendency agrees with the surface rough element distribution around the observation tower.

Radioactivity concentrations of natural radionuclides in fine dust of Jeju, Korea

  • Chung-Hun Han;Sohyeon Lim;Hee-Jung Im
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • Radioactivity concentrations for natural radionuclides were determined from fine dust samples collected in Jeju, Korea according to atmospheric events (Asian dust, haze, fog-mist, and non-event), and radium equivalent activity was calculated. The mean atmospheric radioactivity concentrations for 238U, 232Th, and 40K in 127 fine dust samples were 0.49, 0.24, and 7.23 µBq m-3, respectively, and the radium equivalent activity was 33.25 Bq kg-1. The mean concentrations of 238U and 232Th in the fine dust during the Asian dust period were 1.31 and 1.60 µBq m-3, respectively, above the global average, while the values for the other three atmospheric events were lower. The ratio of 232Th/238U radioactivity during the Asian dust period was 1.22, higher than the ratio for the other three atmospheric events.

Background Level and Time Series Variation of Atmospheric Radon Concentrations at Gosan Site in Jeju Island (제주도 고산지역의 대기 라돈 배경농도 및 시계열 변동)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Kang, Chang-Hee;Ko, Hee-Jung;Chambers, S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.174-183
    • /
    • 2017
  • The background level and timely variation characteristics of atmospheric $^{222}Rn$ concentrations have been evaluated by the real time monitoring at Gosan site of Jeju Island, Korea, during 2008~2015. The average concentration of atmospheric radon was $2,480mBq\;m^{-3}$ for the study period. The cyclic seasonality of radon was characterized such as winter maximum and summer minimum, consistent with the reduction in terrestrial fetch going to summer. On monthly variations of radon, the mean concentration in October was the highest as $3,041mBq\;m^{-3}$, almost twice as that in July ($1,481mBq\;m^{-3}$). The diurnal radon concentrations increased throughout the nighttime approaching to the maximum ($2,819mBq\;m^{-3}$) at around 7 a.m., and then gradually decreased throughout the daytime by the minimum ($2,069mBq\;m^{-3}$) at around 3 p.m. The diurnal radon cycle in winter showed comparatively small amplitude due to little variability in atmospheric mixing depth, conversely, large amplitude was observed in summer due to relatively a big change in atmospheric mixing depth. The cluster back-trajectories of air masses showed that the high radon events occurred by the predominant continental fetch over through Asia continent, and the radon concentrations from China continent were about 1.9 times higher on the whole than those from the North Pacific Ocean. The concentrations of $PM_{10}$ also increased in proportion to the high radon concentrations, showing a good linear correlation between $PM_{10}$ and radon concentrations.

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Thermal stability of nitric acid solutions of reducing agents used in spent nuclear fuel reprocessing

  • Obedkov, A.S.;Kalistratova, V.V.;Skvortsov, I.V.;Belova, E.V.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3580-3585
    • /
    • 2022
  • The thermal stability of carbohydrazide, hydrazine nitrate, acetohydroxamic acid in nitric acid solutions has been studied at atmospheric pressure and above atmospheric pressure. The volumes of gaseous products of thermolysis and the maximum rate of gas evolution have been determined at atmospheric pressure. It has been shown that, despite the high rate of gas evolution and large volumes of evolved gases, the conditions for the development of autocatalytic oxidation are not created. Exothermic processes are observed in a closed vessel in the temperature range of 50-250 ℃. With an increase in the concentration of nitric acid, the temperatures of the onset of exothermic effects for all mixtures decrease, and the values of the total thermal effects of reactions increase, to the greatest extent for solutions with carbohydrazide.

Determination of Trace Metals in Atmospheric Particulates by Ion Chromatography

  • Lee Yong-Keun;Kim Hak-Chul;Lee Dong Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1045-1049
    • /
    • 1994
  • A simple and fast ion chromatographic method is developed for the determination of transition metals such as Fe, Cu, Ni, Zn and Co in atmospheric particulates. The method involves acid digestion, on-column preconcentration, and subsequent ion chromatogaphic detection. The precision of the method is less than 3${\%}$ RSD at parts per billion level for the metals studied. No significant interferences are observed. The results obtained with this method agree well with those by ICP-AES.