• Title/Summary/Keyword: atmosphere model

Search Result 1,171, Processing Time 0.027 seconds

Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms (기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안)

  • Lee, Sang-gwon;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.341-343
    • /
    • 2019
  • As the generation of high concentration particulate matter increases, much attention is focused on the prediction of particulate matter. Particulate matter refers to particulate matter less than $10{\mu}m$ diameter in the atmosphere and is affected by weather changes such as temperature, relative humidity and wind speed. Therefore, various studies have been conducted to analyze the correlation with weather information for particulate matter prediction. However, the nonlinear time series distribution of particulate matter increases the complexity of the prediction model and can lead to inaccurate predictions. In this paper, we try to mitigate the nonlinear characteristics of particulate matter by using cluster algorithm and classification algorithm of machine learning. The machine learning algorithms used are agglomerative clustering, density-based spatial clustering of applications with noise(DBSCAN).

  • PDF

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment (기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석)

  • Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan;Hyun, Yu-Kyung;Ryu, Young;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea (인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증)

  • Kim, Jeongmin;Kim, Jung-Hoon
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.323-340
    • /
    • 2022
  • We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMDAR) data for more than 3-months from 7 May 2021 to 24 August 2021 near Incheon International Airport, Korea. Considering that the AMDAR reports are not provided by all commercial aircraft, total number of the Mode-S derived wind data with a second sampling rate was about twice larger than that of available AMDAR wind data. After the quality control procedures by removing erroneous samples, it was found that the root mean square errors (RMSEs) of the Mode-S retrieved winds are similar to that from the AMDAR winds. In particular, between 550 and 650 hPa levels, RMSE of the Mode-S (AMDAR) zonal wind against ERA5 data was about 2.3 m s-1 (1.9 m s-1), and those increased to 3.3 m s-1 (2.4 m s-1) in 200~500 hPa levels. A similar trend was found in the meridional wind, but a distinct positive mean bias of 2.16 m s-1 was observed between 875 and 1,000 hPa levels. Winds retrieved from the Mode-S also showed a good agreement directly with AMDAR data. As the Mode-S provides a large amount of data with a reliable quality, it can be useful for both data assimilation in the numerical weather prediction model and situational awareness of wind and turbulence for aviation safety in Korea.

Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018 (2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람)

  • Kim, Seok-Hwan;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data (고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용)

  • Yang, Ah-Ryeon;Oh, Su-Bin;Kim, Joowan;Lee, Seung-Woo;Kim, Chun-Ji;Park, Soohyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downscaling method using horizontal distance gradients and an elevation. The predicted meteorological variables (e.g., temperature and 3-hr accumulated rainfall amount) from the Limited-area ENsemble prediction System (LENS; horizontal grid spacing of 3 km) are used for the GIDS to produce a higher horizontal resolution (1.5 km) data set. The obtained results were compared to those from the bilinear interpolation. The GIDS effectively produced high-resolution gridded data for temperature with the continuous spatial distribution and high dependence on topography. The results showed a better agreement with the observation by increasing a searching radius from 10 to 30 km. However, the GIDS showed relatively lower performance for the precipitation variable. Although the GIDS has a significant efficiency in producing a higher resolution gridded temperature data, it requires further study to be applied for rainfall events.

Evaluation of Performance and Uncertainty for Multi-RCM over CORDEX-East Asia Phase 2 region (CORDEX-동아시아 2단계 영역에 대한 다중 RCM의 모의성능 및 불확실성 평가)

  • Kim, Jin-Uk;Kim, Tae-Jun;Kim, Do-Hyun;Kim, Jin-Won;Cha, Dong-Hyun;Min, Seung-Ki;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.361-376
    • /
    • 2020
  • This study evaluates multiple Regional Climate Models (RCMs) in simulating temperature and precipitation over the Far East Asia (FEA) and estimates the portions of the total uncertainty originating in the RCMs and the driving Global Climate Models (GCMs) using nine present-day (1981~2000) climate data obtained from combinations of three GCMs and three RCMs in the CORDEX-EA phase2. Downscaling using the RCMs generally improves the present temperature and precipitation simulated in the GCMs. The mean temperature climate in the RCM simulations is similar to that in the GCMs; however, RCMs yield notably better spatial variability than the GCMs. In particular, the RCMs generally yield positive added values to the variability of the summer temperature and the winter precipitation. Evaluating the uncertainties by the GCMs (VARGCM) and the RCMs (VARRCM) on the basis of two-way ANOVA shows that VARRCM is greater than VARGCM in contrast to previous studies which showed VARGCM is larger. In particular, in the winter temperature, the ocean has a very large VARRCM of up to 30%. Precipitation shows that VARRCM is greater than VARGCM in all seasons, but the difference is insignificant. In the following study, we will analyze how the uncertainty of the climate model in the present-day period affects future climate change prospects.

Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon (열 사이펀의 열전도율 산정을 위한 수치해석 모델 개발)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The areas consisting of frost susceptible soils in cold regions, such as the Arctic area, have problems of frost heave and thaw settlement due to the seasonal air temperature changes and internal temperature of installed structures. Ground stabilization methods for preventing frost heave and thaw settlement of frost susceptible soils include trenching, backfilling and thermo-syphon. The thermo-syphon is the method in which refrigerant can control the ground temperature by transferring the ground temperature to atmosphere in the from of two-phase flow through the heat circulation of the internal refrigerant. This numerical study applied the function of these thermo-syphon as the boundary condition through user-subroutine coding inside ABAQUS and compared and analyzed the temperature results of laboratory experiments.

Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018 (도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가)

  • Kim, Kwonil;Lyu, Geunsu;Baek, SeungWoo;Shin, Kyuhee;Lee, GyuWon
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.