• Title/Summary/Keyword: asymptotic stability

Search Result 384, Processing Time 0.024 seconds

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

A Study on Flame Extinction in Oxymethane Combustion (메탄 산소 연소에 있어서 화염 소화에 대한 연구)

  • Kim, Tae Hyung;Kwon, Oh Boong;Park, Jeong;Keel, Sang-In;Yun, Jin-Han;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.34-41
    • /
    • 2015
  • Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.

Three body problem in early 20th century (20세기초의 삼체문제에 관해서)

  • Lee, Ho Joong
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.53-67
    • /
    • 2012
  • Today, it is necessary to calculate orbits with high accuracy in space flight. The key words of Poincar$\acute{e}$ in celestial mechanics are periodic solutions, invariant integrals, asymptotic solutions, characteristic exponents and the non existence of new single-valued integrals. Poincar$\acute{e}$ define an invariant integral of the system as the form which maintains a constant value at all time $t$, where the integration is taken over the arc of a curve and $Y_i$ are some functions of $x$, and extend 2 dimension and 3 dimension. Eigenvalues are classified as the form of trajectories, as corresponding to nodes, foci, saddle points and center. In periodic solutions, the stability of periodic solutions is dependent on the properties of their characteristic exponents. Poincar$\acute{e}$ called bifurcation that is the possibility of existence of chaotic orbit in planetary motion. Existence of near exceptional trajectories as Hadamard's accounts, says that there are probabilistic orbits. In this context we study the eigenvalue problem in early 20th century in three body problem by analyzing the works of Darwin, Bruns, Gyld$\acute{e}$n, Sundman, Hill, Lyapunov, Birkhoff, Painlev$\acute{e}$ and Hadamard.