Browse > Article
http://dx.doi.org/10.15231/jksc.2015.20.4.034

A Study on Flame Extinction in Oxymethane Combustion  

Kim, Tae Hyung (Power Generation Research Laboratory, Korea Electric Power Research Institute)
Kwon, Oh Boong (Dept. of Mechanical Engineering, Pukyoung National University)
Park, Jeong (Dept. of Mechanical Engineering, Pukyoung National University)
Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Park, Jong Ho (Dept. of Mechanical Engineering, Chungnam National University)
Publication Information
Journal of the Korean Society of Combustion / v.20, no.4, 2015 , pp. 34-41 More about this Journal
Abstract
Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.
Keywords
Chemical effects; Radiation heat loss; Flame extinction; Radical index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Molina, C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst, 31 (2007), pp. 1905-1912.   DOI
2 C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst, 32 (2009), pp. 2091-2098.   DOI
3 J. Zhang, Takamasa, S. Ito, D. Riechelmann, T. Fujimori. Numerical investigation of oxy-coal combustion in a large-scale furnace: non-gray effect of gas and role of particle radiation. Fuel, 139 (2015) 87-93.   DOI
4 J. Rizza, R. Kharami, Y. A. Levendis, Alvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust Flame, 161 (2014), pp. 1096-1108.   DOI
5 Y. Tan, M.A. Douglas, E. Croiset, E. Thambimuthu. $CO_2 $ capture using oxygen enhanced combustion strategies for natural gas power plants. Fuel, 81 (2002), pp. 1007-1016.   DOI
6 J. Park, J.S. Park, H.P Kim, J.S. Kim, S.C. Kim, J.G. Choi, H.C. Cho, K.W. Cho, H.S. Park. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy & Fuels, 21 (2007), pp. 121-129.   DOI
7 F. Liu, H. Guo, G.J. Smallwood. The chemical effect of $CO_2 $ replacement of $N_2 $ in air on the burning velocity of $CH_2 $ and $H_2 $ premixed flames. Combust. Flame, 133 (2003), pp.495-497.   DOI
8 Z. Chen, X. Qin, B. Xu, Y. Ju, F. Liu. Studies of radiation absorption on flame speed and flammability limit of $CO_2 $ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-2700.   DOI
9 K. Maruta, K. Abe, S. Hasegawa, S. Maruyama, J. Sato. Extinction characteristics of $CH_4/CO_2 $ versus $O_4/CO_2 $ counterflow non-premixed flames at elevated pressures up to 0.7 MPa. Proc. Combust. Inst., 31 (2007), pp. 1223-1230.   DOI
10 P. Glaeborg, L.B. Bentze. Chemical Effects of a High $CO_2$ Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels, 22 (2008), pp. 291- 296.   DOI
11 M. Nishioka, C.K. Law, T. Takeno. A Flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame, 104 (1996), pp. 328-342.   DOI
12 R.J. Kee, A. Miller, G.H. Evans, G. Dixon_lewis. A computational model of the structure and extinction of starined, opposed flow, premixed methaneair flames. Prod. Combust. Inst., 22 (1988). Pp. 1479-1494.
13 K. Maruta, M. Yoshida, H. Guo, Y. Ju, T. Niioka. Extinction of low-stretched diffusion flame in microgravity. Combust. Flame, 112 (1998), pp. 181- 187.   DOI
14 Y.H. Chung, D.G. Park, J.H. Yun, J. Park, O.B. Kwon, S.I. Keel. Role of outer edge flame on flame extinction in nitrogen-diluted nonpremixed counterflow flames with finite burner diameters. Fuel, 205 (2013), pp.540-550.
15 J.S. Park, D. J. Hwang, J. Park, J.S. Kim, S.C. Kim, S.I. Keel, K.T. Kim, and D.S. Noh. Edge flame instability in low strain rate counterflow diffusion flame. Combust. Flame, 146 (2006), pp. 612-619.   DOI
16 C. B. Oh, A. Hamins, M. Bundy, J. Park. The Twodimensional structure of low strain rate counterflow non-premixed methane flames in normal and microgravity. Combust. Flame Modelling, 12 (2008), pp. 283-302.   DOI
17 D.G. Park, J.H. Yun, J. Park, and S.I. Keel. A study on flame extinction characteristics along a C-curve. Energy & Fuels, 23 (2009), pp. 4236-4244.   DOI
18 S.H. Won, S. Dooley, F.L. Dryer, Y. Ju. A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combust. Flame, 159 (2012), pp. 541-551.   DOI
19 R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon- Lewis. A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc Combust Inst, 22 (1988), pp.1479-1494.
20 A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley. A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997).
21 Y. Ju, H. Guo, K. Maruta, F. Liu. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J Fluid Mech, 342 (1997), p.315.   DOI
22 R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989).
23 Z. Chen, X. Qin, Y. Ju, F. Liu. Studies of radiation absorption on flame spread and flammability of $CO_2$ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-700.   DOI
24 R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).
25 X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta. Study on stretch extinction limits of $CH_4/O_2 $ versus high temperature $O_2/CO_2$ counterflow non-premixed flames. Combust. Flame, 161 (2014), pp. 1526-1536.   DOI
26 S.W. Jung, J. Park, O.B. Kwon, Y.J. Kim, S.I. Keel, J.H. Yun, I.G. Lim. Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames. Fuel, 136 (2014), pp. 69-78.   DOI
27 A. Linan. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astrronaut, 1 (1974), pp.1007-1039.   DOI
28 F. Liu, G.J. Samllwood, O.L. Gulder, Y. Ju. Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers. Combust. Flame, 121 (2000), pp.275-287.   DOI
29 http://navier.engr.colostate.edu/-dandy/co de/