• Title/Summary/Keyword: asymptotic performance,

Search Result 265, Processing Time 0.024 seconds

An Experimental Study of the Air-side Particulate Fouling of Finned-Tube Heat Exchangers of Air Conditioners by using Accelerated Particle-Loading System (파울링 형성 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 실험적 연구)

  • 안영철;조재민;이재근;이현욱;안승표;윤덕현;하삼철;강태욱;옥주호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.802-808
    • /
    • 2003
  • The air-side particulate fouling of the HVAC heat exchangers degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. The purpose of this study is to investigate the fouling characteristics using accelerated particle loading system. The fouling characteristics are analyzed as functions of a dust concentration, a face velocity and a wet or dry surface condition. The pressure drop increases with increasing test operation and reaches constant asymptotic level. For the saturated condition due to particle loading, the pressure drop across the slitted finned-tube heat exchangers at the face velocity of 1 m/sec increases up to 57% and the cooling capacity decreases about 2%. The cooling capacities are not affected greatly by the presence of the fouling deposits if the thickness of the fouling deposits can not change substantially the flow pattern through the fins.

Time-Discretization of Time Delayed Non-Affine System via Taylor-Lie Series Using Scaling and Squaring Technique

  • Zhang Yuanliang;Chong Kil-To
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.293-301
    • /
    • 2006
  • A new discretization method for calculating a sampled-data representation of a nonlinear continuous-time system is proposed. The proposed method is based on the well-known Taylor series expansion and zero-order hold (ZOH) assumption. The mathematical structure of the new discretization method is analyzed. On the basis of this structure, a sampled-data representation of a nonlinear system with a time-delayed input is derived. This method is applied to obtain a sampled-data representation of a non-affine nonlinear system, with a constant input time delay. In particular, the effect of the time discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. 'Hybrid' discretization schemes that result from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method parameters to meet CPU time and accuracy requirements are examined as well. The performance of the proposed method is evaluated using a nonlinear system with a time-delayed non-affine input.

A Study on Statistical Approach for Nonlinear Image Denoising Algorithms (비선형 영상 잡음제거 알고리즘의 통계적 접근 방법에 관한 연구)

  • Hahn, Hee-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.151-156
    • /
    • 2012
  • In this paper robust nonlinear image denoising algorithms are introduced for the distribution which is Gaussian in the center and Laplacian in the tails. The distribution is known as the least favorable ${\epsilon}$-contaminated normal distribution that maximizes the asymptotic variance. The proposed filter proves to be the maximum likelihood estimator under the heavy-tailed Gaussian noise environments. It is optimal in the respect of maximizing the efficacy under the above noise environment. Another filter for reducing impulsive noise is proposed by mixing with the myriad filter to propose an amplitude-limited myriad filter. Extensive experiment is conducted with images corrupted with ${\alpha}$-stable noise to analyze the behavior and performance of the proposed filters.

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

Input-buffered Packet Switch with a Burst Head Addressable FIFO input buffering mechanism (버스트 헤더 주소 방식의 FIFO 입력 버퍼링 메카니즘을 사용하는 입력 버퍼 패킷 스위치)

  • 이현태;손장우;전상현;김승천;이재용;이상배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.117-124
    • /
    • 1998
  • As window sized increases, the throughput input-buffered packet switch with a window scheme improves on random traffic condition. However, the improvement diminishes quickly under bursty traffic. In this paper, we propose Burst Head Addressable FIFO mechanism and memory structure having search capability in unit of burst header to compensate the sensitiveness of the windowed scheme to bursty traffic. The performance of a input-buffered switch using the proposed Burst Header Addressable FIFO input buffer was analyzed using computer simulations. The maximum throughput of the conventional FIFO scheme approaches an asymptotic value 0.5 as mean burst length increases. The maximum throughput of the proposed scheme is greater than that of the conventional scheme for any mean burst length and window size.

  • PDF

Estimation of the Number of Sources Based on Hypothesis Testing

  • Xiao, Manlin;Wei, Ping;Tai, Heng-Ming
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we propose a new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.

State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonlinear Systems Using Switching Differentiator (불확실한 순궤환 비선형 계통에 대한 스위칭 미분기를 이용한 상태궤환 백스테핑 제어기)

  • Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.716-721
    • /
    • 2019
  • A novel switching differentiator-based backstepping controller for uncertain pure-feedback nonlinear systems is proposed. Using asymptotically convergent switching differentiator, time-derivatives of the virtual controls are directly estimated in every backstepping design steps. As a result, the control law has an extremely simple form and asymptotical stability of the tracking error is guaranteed regardless of parametric or unstructured uncertainties and unmatched disturbances in the considered system. It is required no universal approximators such as neural networks or fuzzy logic systems that are adaptively tuned online to cope with system uncertainties. Simulation results show the simplicity and performance of the proposed controller.

Optimizing Design Constants of Higher-Order Switching Differentiator (고차 스위칭 미분 추정기의 설계 상수 최적화)

  • Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.950-953
    • /
    • 2020
  • A switching differentiator that can estimate the 1st-order time-derivative of a time-varying signal was proposed, and it is extended later to the higher-order switching differentiator(HOSD) that can observe higher-order time-derivatives of a time-varying signal in previous works. By using HOSD, higher-order time-derivatives can be estimated without peaking or chattering, and it has an asymptotic tracking performance. However, there exist many design constants to be determined in HOSD. In this paper, a method of reducing the number of design constants is proposed to solve the problem. Simulations reveal the effectiveness of the proposed method.