• 제목/요약/키워드: asymmetric-plan

검색결과 53건 처리시간 0.021초

Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures

  • Nguyen, Van Tu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.373-389
    • /
    • 2013
  • This paper presents the influence of incident angles of earthquakes on inelastic dynamic responses of asymmetry single story buildings under seismic ground motions. The dynamic responses such as internal forces and rotational ductility factor are used to evaluate the importance of the incident angles of ground motions in the inelastic range of structural behavior. The base shear and torque (BST) response histories of the resisting elements and of the building are used to prove that the shape of the BST surface of the building can be a practical tool to represent those of all resisting elements. This paper also shows that the different global forces which produce the maximum demands in the resisting elements tend to converge toward a single distribution in a definable intensity range, and this single distribution is related to the resistance distribution of the building.

횡하중에 의한 고층건물의 비틀림 거동분석 (Prediction of Torsional Behavior for High-Rise Building Structures under Lateral Load)

  • 서현주
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.151-160
    • /
    • 1999
  • It is recommended to have symmetric plan and elevation in structural design of hight-rise building structures to reduce torsional response of the structures. However it is not always allowed to do so due to architectural purposes. in many cases high-rise buildings are asymmetric. The purpose of this study is to predict the torsional behavior of high-rise building structures with asymmetric plan. Equivalent lateral stiffness and deformation shape factor are used for prediction of torsional response of high-rise buildings. Overall torsion of a structure is estimated by equivalent lateral stiffness and torsion of each floor is estimated by deformation factor in each 2-D lateral force resisting elements.

  • PDF

유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계 (Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm)

  • 이준호;김유성;성은희
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

양방향 10MDSL을 위한 VDSL 시스템의 주파수할당 계획 (An Effective Frequency Allocation Plan for Symmetric 10MDSL Systems)

  • 길정수;권호열
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.169-173
    • /
    • 2002
  • In this paper, we discussed an effective VDSL frequency plan for symmetric 10MDSL service. The frequency plan 998 and plan 997 for asymmetric VDSL services have been not optimally designed for 10MDSL services. To obtain the reaches and data rates of 10MDSL, we proposed two frequency allocation schemes : Static method and dynamic method. We can select frequency bands with their fixed boundaries in static method while with their variable boundaries in dynamic method. To show the effectiveness of our proposed methods, we performed some simulations about plan 997 and plan 998, new static method, and new dynamic method. According to the simulation results, the proposed dynamic method can provide the best data rates and reaches for 10 Mbps symmetric VDSL services.

  • PDF

정적 부하왜란이 있는 경우의 포화함수를 이용한 PID 자동동조 (PID Autotuning Based on Saturation Function Feedback with A Static Load Disturbance)

  • 오승록
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.542-548
    • /
    • 2002
  • We consider an unknown linear time invariant plan with static load disturbance. A saturation function nonlinear element is sued to find th one point information in the frequency domain. We analyze an asymmetric self-oscillation caused by static load disturbance with relay feedback and saturation function feedback. We propose a new method to tune a PID controller using a saturation nonlinear feedback element in the presence of asymmetric oscillation. The proposed method does not require the knowledge of plant d.c. gain with an asymmetric oscillation in the plat output.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

STUDY ON MONITORING UNIT EFFICIENCY OF FLATTENING-FILTER FREE PHOTON BEAM IN ASSOCIATION WITH TUMOR SIZE AND LOCATION

  • Kim, Dae Il;Kim, Jung-In;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.194-201
    • /
    • 2013
  • To investigate monitoring unit (MU) efficiency and plan quality of volumetric modulated arc therapy (VMAT) using flattening-filter free (FFF) photon beam in association with target size and location. A virtual patient was generated in Eclipse$^{TM}$ (ver. A10, Varian Medical Systems, Palo Alto, USA) treatment planning system. The length of major and minor axis in axial view was 50 cm and 30 cm, respectively. Cylindrical-shaped targets were generated inside that patient at the center (symmetric target) and in the periphery (asymmetric target, 7.5 cm away from the center of the patient to the right direction) of the virtual patient. The longitudinal length was 10 cm and the diameters were 2, 5, 10 and 15 cm. Total 8 targets were generated. RapidArc$^{TM}$ plans using TrueBeam STx$^{TM}$ were generated for each target. Two full arcs were used and the axis of rotation of the gantry was set to be at the center of the virtual patient. Total MU, homogeneity index (HI), target mean dose, the value of gradient measure and body mean dose were calculated. In the case of symmetric targets, averaged total MU of FFF plan was 23% and 19% higher than that of flattening filter (FF) plan when using 6 MV and 10 MV photons, respectively. The difference of HI, target mean dose, gradient measure and body mean dose between FF and FFF was less than 0.04, 2.6%, 0.1 cm and 2.2%, respectively. For the asymmetric targets, total MU of FFF plan was 21% and 32% was higher than that of FF when using 6 MV and 10 MV photons, respectively. The homogeneity of the target was always worse when using FFF than using FF. The maximum difference of HI was 0.22. The target mean dose of FFF was 3.2% and 4.1% higher than that of FF for the 6 MV and 10 MV, respectively. The difference of gradient measure was less than 0.1 cm. The body mean dose was higher when using FFF than FF about 4.2% and 2.8% for the 6 MV and 10 MV, respectively. No significant differences between VMAT plans of FFF beam and FF beam were observed in terms of quality of treatment plan. The HI was higher when using FFF 10 MV photons for the asymmetric targets. The MU was increased noticeably when using FFF photon beams.

Akap12beta supports asymmetric heart development via modulating the Kupffer's vesicle formation in zebrafish

  • Kim, Jeong-gyun;Kim, Hyun-Ho;Bae, Sung-Jin
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.526-531
    • /
    • 2019
  • The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer's vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of $akap12{\beta}$ in asymmetric heart development. The $akap12{\beta}$, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and $akap12{\beta}$-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of $akap12{\beta}$ also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous $akap12{\beta}$ mRNA not only restored the defective heart laterality but also increased cadherin1 expression in $akap12{\beta}$ morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that $akap12{\beta}$ regulates heart laterality via cadherin1.