• Title/Summary/Keyword: asymmetric membrane

Search Result 142, Processing Time 0.035 seconds

ASYMMETRIC MEMBRANE FORMATION VIA IMMERSION PRECIPITATION : KINETIC EFFECT

  • 강용수;김효진;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.38-39
    • /
    • 1991
  • 비대칭 다공막은 자체로서 UF혹은 MF용으로 사용될 뿐만 아니라 RO혹은 기체분리용 복합박막의 지지막으로도 사용되기 때문에 비대칭다공막 제조기술은 분리막의 제조에 가장 중요한 것 중의 하나이다. 대부분의 비대칭 다공막은 상반전법에 의하여 제조되며, 상반전법은 균질 고분자용액이 비용매 속에서 두개의 용액상 (고분자 농후 및 희박용액상)으로 분리된 후 비대칭다공막으로 되는 과정을 일컫는다.

  • PDF

Pervaporation Separation of Water-isopropanol Mixtures Through Modified Asymmetric Polyetherimide membranes: the Effect of NaOH Concentration for the Modification of Skin Layers on the Pervaporation Characteristics (개질 비대칭 폴리에테르이미드막을 통한 물-이소프로판올 혼합물의 투과증발 분리: 투과증발 특성에 미치는 표면층 개질에 사용된 NaOH 농도의 영향)

  • Kim, Sang-Gyun;Jegal, Jonggeon;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.319-323
    • /
    • 1999
  • Asymmetric polyetherimide membranes were prepared by phase inversion method. In the modification of the skin layers of polyetherimide membranes, the effects of NaOH concentration on the morphology and pervaporation separation of water-isopropanol mixtures were investigated. With increasing concentration of NaOH solution, polyamicacid structure was formed by the hydrolysis of imide group of polyetherimide, and the thickness of dense layer of the asymmetric membrane increased. In the pervaporation separation of water-isopropanol mixtures the overall permeation rate decreased and the separation factor increased with increasing concentration of NaOH solution. However, when the concentration of NaOH solution was very high, the permeation rate increased but separation factor decreased. From these results, it was found that the permeation behaviors of asymmetric polyetherimide membranes depended upon the concentration of NaOH solution. These modified membranes showed that both the permeation rate and separation factor increased as the operating temperature increased.

  • PDF

Preparation and Characterization of Chemically Stable PVDF-HFP Asymmetric Microfiltration (MF) Membranes

  • Lee, Yeon-Ee;JeGal, Jong-Geon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • Chemically stable Polyvinylidene fluoride-hexa-fluoropropane (PVDF-HFP) copolymer asymmetric membranes were prepared by the conventional phase inversion process, using Dimethyacetamide (DMAc) as a solvent and water as a non-solvent. To control the pore size and porosity of the PVDF-HFP membranes, tetra-ethoxysilane (TEOS) was used as a pore-forming agent. The prepared membranes were characterized, using several analytical methods such as Fourier Transform Infrared spectroscopy (FTIR), Thermo-gravimetric analyzer (TGA), Field Emission Scanning Electronic Microscopy (FESEM). TEOS turned out to increase porosity and make homogeneous pores on the membranes. Depending on the composition of the dope solutions, the pore size was ranged from 0.1 to 1.0 ${\mu}m$. The flux of the PVDF-HFP membranes prepared by using TEOS as a pore forming agent was increased substantially without much decrease in the rejection. When 15 wt% PVDF-HFP solution was blended with 13 wt% TEOS solution at composition ratio of 70/30 in wt%, the water flux at 2 bars was about 2 $m^3/m^2day$.

Preparation of Asymmetric Membranes by Addition of Nonsolvent (비용매 첨가제를 이용한 비대칭막의 제조)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • High performance polysulfone microfiltration membranes with a high were successfully prepared by vapor induced phase separation (VIPS) coupled with non-solvent induced phase separation (NIPS) process. Asymmetric Membranes were prepared with PSF/DMF/PVP/PEG/DMSO/water mixed solutions and water/IPA coagulant. PSF, DMF, PVP, PEG, DMSO, water was used as a membrane polymer, a solvent, a hydrophilic polymer additive, a polar protic liquid polymer, a polar aprotic nonsolvent, and a polar protic nonsolvent in the casting solution, respectively. The addition of polar aprotic nonsolvents, and polar protic nonsolvents is a convenient and effective method to control membrane structure. In order to control the morphology of polymeric membranes, the spontaneous emulsification induced by drawing water vapor into the exposed casting solution surface has been used. Control of the internal morphology of polymeric membranes by using mixed coagulation solution such as water and IPA is discussed in the present work. The pure water permeability, pore size distribution, surface hydrophilicity and membrane morphology were investigated. Due to the addition of DMSO to casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 1000-1800 LMH.

Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production (바이오의약품 제조공정에서 분리막의 역할과 바이러스 필터 동향)

  • Choi, Tae Hwan;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.9-20
    • /
    • 2020
  • Membranes are used in most processes of biopharmaceutical production. It is used for pretreatment of other processes, separation of impurities in the process, virus removal, control of products concentration and buffer solution exchange. Virus filters play an important role in ensuring product efficacy and stability because viral contamination of biopharmaceuticals for humans is a sensitive issue that is directly related to serious clinical outcomes. Virus filters typically have complex multilayer structures made of various polymers such as surface-modified PVDF, PES, CRC. Depending on the manufacturer, filters have different pore structures and shapes, such as symmetric or asymmetric, and is used in the form of pleated membrane, flat sheets or hollow fibers. Virus filters are exclusively supplied by few foreign companies such as Asahi Kasei, Millipore, Pall and Sartorius. Replacing virus filters can be time consuming and expensive, including approval from regulatory agencies through validation. As localization has become important due to Japan's recent export regulations, it is necessary to increase the degree of technical independence.

The Study of Permeation Characteristics for Pure Carbon Dioxide and Methane, and Gas Mixture in Cellulosic Membrane (셀룰로오스 분리막을 통한 순수 이산화탄소 메탄 및 혼합기체의 투과 특성 연구)

  • Kim, Hyun Joon;Kim, Hong Il;Kang, Yong Soo;Hong, Suk In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.605-613
    • /
    • 1996
  • The permeation characteristics were investigated for pure carbon dioxide and methane through asymmetric cellulose acetate(CA) membrane, composite cellulose acetate membrane and asymmetric cellulose triacetate(CTA) membrane. In particular, the effect of operating pressure on the permeation performance was examined. And the permeation behavior for a mixture of carbon dioxide and methane ($CO_2/CH_4=57.6/42.4$) was also investigated and compared to the characteristics obtained from pure gases. The experiments were run at the range of partial pressure from 25 to 125 psig, and room temperature. The permeation behaviors of the CA composite and CTA membrane were similiar to those of the CA membrane. The permeation rates of pure carbon dioxide for CA, CA composite and CTA membrane were increased slightly with an increase in upstream partial pressure, while in the case of pure methane they were independent of upstream partial pressure. For a binary mixture of carbon dioxide and methane, abnormal permeation behaviors were observed due to the plasticization of carbon dioxide and the competition effect of each gas. The separation factor and permeation rate for CTA membrane were found to be higher than those for CA membrane, but the mechanical strength of CTA membrane was very poor. And the permeation rate for CA composite membrane was higher than that for CA membrane. Consequently, it can be said that the CA composite membrane is a strong candidate for the separation of $CH_4$ and $CO_2$.

  • PDF

Theoretical Analysis on the Velocity Profile of Newtonian Fluids within Modelled Asymmetric Membrane Pores (모델화한 비대칭형 막기공에서 뉴톤 유체의 속도분포에 관한 이론해석)

  • 전명석;김재진
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • The extended analysis on the diverging flow through asymmetric membrane pores has been performed in this study. Afore rigorous equations of velocity profile relevant to the divergent slit and cone shaped channels, which are widely used as a general pore model, have been obtained by employing a creeping flow approach of Newtonian fluids. As a degree of asymmetry (i.e., diverging angle) is increased, the predicted flow function shifts Toward the center region due to the incorporated wall effect, so that the overall velocity profile becomes decreased. It is true, as expected, that when the divergent channel is in the low diverging angle limit, the channel flow results in the Poiseuillean fashion by utilizing a lubrication approximation. The flow rate equation of each type of channel has been developed from the combined solution of velocity profile and pressure fields. The effect of diverging flow on the flow rate enhancement has been remarkably predicted, in which the flow rate increases with the increase of pore asymmetry. The advantage of our theoretical results lies in the analytical expression for the diverging flow behavior through pore channels as well as its ability to play a fundamental role on the related membrane filtrations such as microfiltration and ultrafiltration.

  • PDF

Effect of structure of PVDF membranes on the performance of membrane distillation

  • Chang, Hsu-Hsien;Tsai, Chih-Hao;Wei, Hao-Cheng;Cheng, Liao-Ping
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2014
  • A series of microporous PVDF membranes were prepared by isothermal immersionprecipitation of PVDF/TEP casting dopes in both soft and harsh coagulation baths. Morphologies of the membranes' top surfaces were found to depend strongly on the bath strength, which could be controlled by the TEP content in the bath. By changing the bath gradually from pure water to 70% TEP, the top surface evolved from a dense skin-like (asymmetric) to a totally open porous morphology (symmetric). The latter structure could similarly be obtained by precipitation of the same dope in an alcoholic bath, e.g., 1-butanol. Membrane distillation processes to desalt sodium chloride aqueous solutions were conducted using various prepared membranes and two commercial microporous membranes, PTFE (Toyo, Japan, code: J020A330R) and PVDF (GE, USA, code: YMJWSP3001). The permeation fluxes were compared and correlated with the morphologies of the tested membranes.

Expanding the Limits of Membrane-Based Gas Separation Materials

  • Koros, William J.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.21-22
    • /
    • 1995
  • Gas separation science and technology is among the most rapidly growing areas involving membrane-based processes. Nitrogen enrichment of air, hydrogen recovery from a broad array of stream types, and removal of acid gases from natural gases are typical of the applications in this field. Great progress has been made in the discovery of guidelines optimization of polymer structures with simultaneously high permeabilities and selectivities for these important gas pairs. The development of thin-skinned asymmetric hollow fibers have also provided structures with extremely high permeation fluxes. Especially in the case of O$_{2}$/N$_{2}$ separations, the rate of improvements in new polymeric materials for gas separations appears to be slowing to a halt. Evidence will be presented, however, that the practical tradeoff between membrane permeability and selectivity has not been reached.

  • PDF

THE REVERSE OSMOSIS PROCESS

  • Erickson, Steve
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.9-9
    • /
    • 1991
  • This paper will begin by describing osmosis and how reverse osmosis works. It will show how osmotic pressure affects reverse osmosis operations. It uill explain salt rejection, membrane flux, and recovery rates and the affect that salt built up has on membrane performance. It wil 1 explain the limitations of RO performance and why pretreatment is important. It will describe the two basic types of membrane, asymmetric and thin-film composite and explain the difference between these types plus compare cellulose acetate types to aromatic polyamide type membranes. It will discuss operating efficiences as it compares to feedwater pressure, concentration, temperature and pH. Finally, it will discuss the differences between tubular, plate and frame, hollow fiber and spiral wound element design. It will be a paper that talks about the basics of RO systems and should give a person who is unfamiliar with RO a basic introduction to this type of separation technology.

  • PDF