• Title/Summary/Keyword: asymmetric Mach-Zehnder interferometer

Search Result 7, Processing Time 0.021 seconds

Lithium Niobate (LiNbO3) Photonic Electric-Field Sensors

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.194-213
    • /
    • 2022
  • This study comprehensively reviewed four types of integrated-optic electric-field sensors based on titanium diffused lithium-niobate waveguides: symmetric and asymmetric Mach-Zehnder interferometers, 1×2 directional couplers, and Y-fed balanced-bridge Mach-Zehnder interferometers. First, we briefly explain the crystal properties and electro-optic effect of lithium niobate and the waveguide fabrication process. We theoretically analyzed the key parameters and operating principles of each sensor and antennas. We also describe and compare the design, simulation, implementation, and performance tests: dc and ac characteristics, frequency response, dynamic range, and sensitivity. The experimental results revealed that the sensitivity of the sensor based on the Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI) was higher than that of the other types of sensors.

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer (비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구)

  • Ha, Jeongho;Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.128-134
    • /
    • 2012
  • The performance evaluation and fabrication of integrated-optic electric-field sensor utilizing $Ti:LiNbO_3$ asymmetric Mach-Zehnder intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1\;mm$ and operates at a wavelength $1.3{\mu}m$. The devices are simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides. The minimum detectable electric field is 1.02 V/m and 6.91 V/m, corresponding to a dynamic range of ~35 dB and ~10 dB at the frequencies of 500 KHz and 5 MHz, respectively.

A Study on the Sensing Part of Integrated-Optic Electric Field Sensor Utilizing Ti:LiNbO3 Asymmetric Mach-Zehnder Interferometer and Segmented Electrode Structure (Ti:LiNbO3 비대칭 Mach-Zehnder 간섭기와 분할 전극구조를 이용한 집적광학 전계센서의 감지부에 관한 연구)

  • Jung, Hong-Sik;Kim, Young-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.165-172
    • /
    • 2012
  • Integrated-optic asymmetric Mach-Zehnder interferometer at $1.3{\mu}m$ wavelength and segmented electrode structure were designed and fabricated as a sensing part for the electric-field measurement system. The device was simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. Almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}/2$ intrinsic phase difference. Expected experimental measurements were observed for 1KHz electrical signal bandwidth.

A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement (전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구)

  • Jung, Hong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.15-22
    • /
    • 2011
  • Integrated-optic symmetric/asymmetric Mach-Zehnder interferometers at $1.3{\mu}m$ wavelength were studied as sensing part for electric-field measurement system. The devices were simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. A half-wave voltage of $V_{\pi}$=6.6V and modulation depth of 100% and 75% for a symmetric structure were measured for 200Hz and 1kHz electrical signal bandwidth, respectively. By the way, almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}$/2 intrinsic phase difference. Expected experimental measurements were observed for 1kHz electrical signal bandwidth.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Optical Implementation of Asymmetric Cryptosystem Combined with D-H Secret Key Sharing and Triple DES

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.592-603
    • /
    • 2015
  • In this paper, an optical implementation of a novel asymmetrical cryptosystem combined with D-H secret key sharing and triple DES is proposed. The proposed optical cryptosystem is realized by performing free-space interconnected optical logic operations such as AND, OR and XOR which are implemented in Mach-Zehnder type interferometer architecture. The advantage of the proposed optical architecture provides dual outputs simultaneously, and the encryption optical setup can be used as decryption optical setup only by changing the inputs of SLMs. The proposed cryptosystem can provide higher security strength than the conventional electronic algorithm, because the proposed method uses 2-D array data, which can increase the key length surprisingly and uses 3DES algorithm, which protects against “meet in the middle” attacks. Another advantage of the proposed asymmetrical cryptosystem is that it is free to change the user’s two private random numbers in generating the public keys at any time. Numerical simulation and performance analysis verify that the proposed asymmetric cryptosystem is effective and robust against attacks for the asymmetrical cipher system.