Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.4.194

Lithium Niobate (LiNbO3) Photonic Electric-Field Sensors  

Jung, Hongsik (Dept. of Electronic and Electrical Fusion Engineering, College of Science & Technology, Hongik Unversity)
Publication Information
Journal of Sensor Science and Technology / v.31, no.4, 2022 , pp. 194-213 More about this Journal
Abstract
This study comprehensively reviewed four types of integrated-optic electric-field sensors based on titanium diffused lithium-niobate waveguides: symmetric and asymmetric Mach-Zehnder interferometers, 1×2 directional couplers, and Y-fed balanced-bridge Mach-Zehnder interferometers. First, we briefly explain the crystal properties and electro-optic effect of lithium niobate and the waveguide fabrication process. We theoretically analyzed the key parameters and operating principles of each sensor and antennas. We also describe and compare the design, simulation, implementation, and performance tests: dc and ac characteristics, frequency response, dynamic range, and sensitivity. The experimental results revealed that the sensitivity of the sensor based on the Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI) was higher than that of the other types of sensors.
Keywords
Integrated-optic electric-field sensor; Electro-optic effect; Lithium niobate ($LiNbO_3$); Titanium diffused channel waveguide; Mach-Zehnder interferometer; $1{\times}2$ directional coupler; Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI); Dipole patch antenna;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Lu, Y. Li, and J. Zhong, "Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna," Sensors, Vol. 21, No. 11, pp. 3672(1)-3672(11). 2021.
2 T. H. Lee, F. T. Hwang, W. T. Shay, and C. T. Lee, "Electromagnetic field sensor using Mach-Zehnder waveguide modulator" Microw. Opt. Technol. Lett., Vol. 48, No. 9, pp. 1897-1899, 2006.   DOI
3 H. S. Jung, "Electro-optic field sensor utilizing Ti:LiNbO3 symmetric Mach-Zehnder interferometers", J. Opt. Soc. Korea , Vol. 16, No. 1, pp. 47-52, 2012.   DOI
4 C. Y. Lin, A. Wang, X. Zhang, B. S. Lee, and R. T. Chen, "EO-polymer waveguide based high dynamic range EM wave sensors", Proc. SPIE 8258, Organic Photonic Materials and Devices XIV, pp. 1-7, 2012.
5 M. A. Webster, M. W. Austin, and S. T. Winnall, "Balanced-bridge Mach-Zehnder interferometric optical modulator with an electrical bandwidth of 30 GHz", CLEO-PR 1997, pp. 266-267, Chiba, Japan 1997.
6 A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada and M. Izutsu, "Low crosstalk balanced bridge interferometric-type optical switch for optical signal routing", IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 6, pp. 183-189, 2013.   DOI
7 H. S. Jung, "Electro-optic electric-field sensors utilizing Ti: LiNbO3 1×2 directional coupler with dipole antennas", Opt. Eng., Vol. 52, No. 6, pp. 064402-064402, 2013.   DOI
8 Y. Yamaguchi, S. Nakajima, A. Kanno, T. Kawanishi, M. Izutsu and H. Nakajima, "High extinction ratio characteristics of over 60 dB Mach-Zehnder modulator with asymmetric power-splitting Y-branches on X-cut Ti:LiNbO3", Jpn. J. Appl. Phys., Vol. 53, No. 8S2, pp. 08MB03(1)-08MB03(4), 2014.
9 C. Gutierrez-Martinez, J. Santos-Aguilar, J. Meza-Perez, and A. Morales-Diaz, "Novel Electric Field Sensing Scheme Using Integrated Optics LiNbO3 Unbalanced Mach-Zehnder Interferometers and Optical Delay-Modulation", J. Lightwave Technol., Vol. 35. No. 1, pp. 27-33, 2017.   DOI
10 D. An, Z. Shi, L. Sun, M. John, J. M. Taboada, Q. Zhou, X. Lu, and R. T. Chen, "Polymeric electro-optic modulator based on 1×2 Y-fed directional coupler. Appl. Phys. Lett., Vol. 76, No. 15, pp. 98-104, 2005.
11 C. Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, "High dynamic range electric field sensor for electromagnetic pulse detection," Opt. Express, Vol. 19, No. 18, pp. 17372-17377, 2011   DOI
12 M. M. Howerton, C. H. Bulmer, and W. K. Burns, "1 ×2 directional coupler for electromagnetic field detection", Appl. Phys. Lett., Vol. 52, No. 22, pp. 1850-1852, 1988.   DOI
13 M. Schwerdt, J. Berger, B. Schuppert, and K. Petermann, "Integrated optical E-field sensors with a balanced detection scheme", IEEE Trans. Electromagn. Compat., Vol. 39, No. 4, pp. 386-390, 1997.   DOI
14 M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, and S. K. Park, "Polymeric electrooptic 2 × 2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer", IEEE J. Sel. Top. Quantum Electron., Vol. 7, No. 5, pp. 812-818, 2001.   DOI
15 H. S. Jung, "An Integrated Photonic Electric-Field Sensor Utilizing a 1 × 2 YBB Mach-Zehnder Interferometric Modulator with a Titanium-Diffused Lithium Niobate Waveguide and a Dipole Patch Antenna", Crystals, Vol. 9, No. 9, pp. 458-459, 2019.   DOI
16 J. E. Toney, Lithium Niobate Photonics, Artech House, Boston. pp. 11-35, 2015.
17 C. Barthod, M. Passard, J. Bouillot, C. Galez, and M. Farzneh, "High electric field measurement and ice detection using a safe probe near power installations," Sens. Actuators A, Phys., Vol. 113, No. 2, pp. 140-146, 2004.   DOI
18 B. Loader, M. Alexander, and R. Osawa, "Development of optical electric-field sensors for EMC measurement", IEEE Int. Symp. Electromagn., pp. 658-661, 2014.
19 N. Kuwabara, K. Tajima, R. Kobayashi and F. Amemiya, "Development and analysis of electric-field sensor using LiNbO3 optical modulator", IEEE Trans. Electromagn. Compat., Vol. 34, No. 4, pp. 391-396, 1992.   DOI
20 C. Bulmer and W. Burns, "Linear interferometric modulators in Ti:LiNbO3", J. Light. Technol., Vol. 2, No. 4, pp. 512-521, 1984.   DOI
21 R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3", Appl. Phys. Lett., Vol. 25, No. 8, pp. 458-460, 1974.   DOI
22 Y. Painchaud, M. Poulin, M. Morin, and T. Michel, "Performance of balanced detection in a coherent receiver", Opt. Ex., Vol. 17, No. 5, pp. 3659-3672, 2009.   DOI
23 C. Gutierrez-Martinez and R. Ricardez-Trejo, "Remotely biasing the electro-optic response of an electric field sensing-detection system using LiNbO3 asymmetric Mach-Zehnder optical retarders", Applied Optics, Vol. 57, No. 32, pp. 9677-9682, 2018.   DOI
24 R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a Y-cut lithium niobate", IEEE Photonics Technol. Lett., Vol. 19, No. 16, pp. 1269-1271, 2007.   DOI
25 R. Zeng, B. Wang, Z. Yu, B. Niu, and Y. Hua, "Integrated optical E-field sensor based on balanced Mach-Zehnder interferometer", Opt. Eng., Vol. 50, No. 11, pp. 114404- 114404, 2011.   DOI
26 H. S. Jung, "Integrated-optic electric-field sensor utilizing a Ti: LiNbO3 Y-fed balanced bridge Mach-Zehnder interferometric modulator with a segmented dipole antenna", J. Opt. Soc. Korea, Vol. 18, No. 6, pp. 739-745, 2014.   DOI
27 M. C. Gupta and J. Ballato, The Handbook of Photonics, 2nd ed.; CRC press, New York, pp. 1-19, 2006.
28 D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium nobate", Opt. Ex., Vol. 2, No. 12, pp. 491-502, 1998.   DOI
29 R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed, Springer-Verlag, New York, pp. 53-84, 2009.
30 A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassa, "Optically Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3", Appl. Phys. Lett., Vol. 9, No. 1, pp. 72-74, 1996.   DOI
31 T. P. Pearsall, S. Chiang, and R. V. Schmidt, "Study of titanium diffusion in lithium-niobate low-loss optical waveguides by x-ray photoelectron spectroscopy", J. Appl. Phys., Vol. 47, No. 11, pp. 4794-4797, 1976.   DOI
32 OptiBPM 9.0: Waveguide Optics Design Software. Optiwave Systems Inc., Ottawa, ON, Canada.
33 M. L. Crawford, "Generation of Standard EM Fields Using TEM Transmission Cells", IEEE Transactions Electromag. Compata., Vol. EMC-16, No. 4, pp. 189-195, 1974.   DOI
34 C. T. Lee and W. H. Huang, "Integrated azimuthal lithium niobate electromagnetic field sensor with Mach-Zehnder waveguide modulator and micromultiannular antenna", Microw. Opt. Technol. Lett. , Vol. 53, No. 3, pp. 565-567, 2011.   DOI
35 V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffused LiNbO3 strip waveguides", Appl. Phys. Lett., Vol. 32, No. 10, pp. 644-646, 1978.   DOI
36 V. A. Rakov and F. Rachidi, "Overview of recent progress in lightning research and lightning protection," IEEE Trans. Electromagn. Compat., Vol. 51, No. 3, pp. 428-442, 2009.   DOI
37 P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications I: Fundamental Phenomena, Springer-Verlag, Berlin, pp. 7-74, 1988.
38 T. Volk, N. Rubinina, and M. Wohlecke, "Optical-Damage-Resistant Impurities in Lithium Niobate", J. Opt. Soc. Am. B, Vol. 11, No. 9, pp. 1681-1687, 1994.   DOI
39 M. N. Aremenise, "Fabrication techniques of lithium niobate waveguides" IET Optoelectron., Vol. 135, No. 2, pp. 85-91, 1988.   DOI
40 A. D. Yaghjian, "An overview of near-field antenna measurements," IEEE Trans. Antennas Propag., Vol. 34, No. 1, pp. 30-45, 1986.   DOI
41 Y. Geng, R. Zeng, H. Jinliang, S. Chen, and B. Zhang, "The Design of Electric-optical Modulator Used in EMC Measurements", IEEE Int. Symp. Electromagn., pp. 1-6, 2007.
42 H. Trinks, G. Matz, and H. Schilling, "Electro-optical system for EMP measurement," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 1, pp. 75-77, 1980.   DOI
43 C. H. Bulmer, "Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing", Appl. Phys. Lett., Vol. 53, No. 24, pp. 2368-2370, 1988.   DOI
44 B. Sun, F. Chen, K. Chen, Z. Hu, and Y. Cao, "Integrated Optical Electric-field Sensor from 10 KHz to 18 GHz", IEEE Photonics Technol. Lett., Vol. 24, No. 13, pp. 1106-1108, 2012.   DOI
45 P. Drexler and P. Fiala, "Methods for high-power EM pulse measurement," IEEE Sensors J., Vol. 7, No. 7, pp. 1006-1011, 2007.   DOI
46 R. Zeng, B. Wang, B. Niu, and Z. Yu, "Development and application of integrated optical sensors for intense E-field measurement", Sensors, Vol. 12, No. 8, pp. 11406- 11434, 2012.   DOI
47 R. Kobayashi, K. Tajima, N. Kuwabara and M. Tokuda, "Theoretical analysis of the sensitivity of electric-field sensors using LiNbO3 optical modulator", Electron. Commun. Jpn., Vol. 80, No. 12, pp. 79-89, 1997.
48 P. Liu, B. J. Lia, and Y. S. Trisno, "In search of a linear electrooptic amplitude modulator", IEEE Photonics Technol. Lett., Vol. 3, No. 2, pp. 144-146, 1991.   DOI
49 T. Meier, C. Kostrzewa, K. Petermann, and B. Schuppert, "Integrated optical E-field probes with segmented modulator electrodes", J. Light. Technol., Vol. 12, No. 8, pp. 1497-1503, 1994.   DOI
50 J. B. Rosolem, C. F. Barbosa, C. Floridia, and E. W. Bezerra, "A passive opto-electronic lightning sensor based on electromagnetic field detection for utilities applications," Meas. Sci. Technol., Vol. 21, No. 9, pp. 094032(1)- 094032(5), 2010.   DOI
51 H. S. Jung, "Photonic electric-field sensor utilizing an asymmetric Ti: LiNbO3 Mach-Zehnder interferometer with a dipole antenna", Fiber Integr. Opt., Vol. 31, No. 6, pp. 343-354, 2012.   DOI
52 M. Kanda and L. D. Driver, "An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100 KHz to 18 GHz", IEEE Trans. Microw. Theory Techn., Vol. MTT-35, No. 2, pp. 124-130, 1987.
53 D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic MachZehnder interferometer with no electrodes for sensing electric-fields", J. Light. Technol., Vol. 12, No. 6, pp. 1092-1098, 1994.   DOI