• 제목/요약/키워드: astronomical physics

검색결과 1,396건 처리시간 0.028초

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS

  • Cho, K.S.;Bong, S.C.;Choi, S.;Yang, H.;Kim, J.;Baek, J.H.;Park, J.;Lim, E.K.;Kim, R.S.;Kim, S.;Kim, Y.H.;Park, Y.D.;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • 천문학회지
    • /
    • 제50권5호
    • /
    • pp.139-149
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

DISCOVERY OF WHITE DWARFS IN THE GLOBULAR CLUSTERS M13 AND M22 USING HST ACS PHOTOMETRIC DATA

  • CHO, DONG-HWAN;YOON, TAE SEOG;LEE, SANG-GAK;Sung, HYUN-IL
    • 천문학회지
    • /
    • 제48권6호
    • /
    • pp.333-341
    • /
    • 2015
  • A search for hot and bright white dwarfs (WDs) in the Milky Way globular clusters M13 (NGC 6205) and M22 (NGC 6656) is carried out using the deep and homogeneous V I photometric catalog of Anderson et al. and and Sarajedini et al., based on data taken with the ACS/WFC aboard the Hubble Space Telescope (HST). V versus V − I color-magnitude diagrams (CMDs) of M13 and M22 are constructed and numerous spurious detections are rejected according to their photometric quality parameters qfit(V ) and qfit(I). In the case of M13, further radial restriction is applied to reject central stars with higher photometric errors due to central crowding. From each resultant V versus V −I CMD, sixteen and thirteen WD candidates are identified in M13 and M22, respectively. They are identified as stellar objects in the accompanying ACS/WFC images and are found to be randomly distributed across the central regions of M13 and M22. Their positions in the CMDs are in the bright part of the DA WD cooling sequences indicating that they are true WDs. In order to confirm their nature, follow-up spectroscopic observations are needed.

A 3-D BICONICAL OUTFLOW MODELING OF GAS KINEMATICS FOR TYPE 2 AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.40.2-41
    • /
    • 2016
  • To understand the observed kinematics in the narrow-line region (NLR) of type 2 AGNs, we construct a model of 3-D biconical outflow combined with a thin dust plane. The model consists of two identical cones whose apex is located at the nucleus, and the cones are axisymmetric with respect to the bicone axis. After we define the properties of the bicone and the dust plane, we calculate a spatially integrated velocity and velocity dispersion along the line-of-sight using various physical parameters. As we test the effect of model parameters, we find three key parameters determining the integrated kinematics: intrinsic outflow velocity, bicone inclination, and the amount of dust extinction. The velocity dispersion increases as the intrinsic outflow velocity or the bicone inclination increases, while the velocity shift increases as the amount of dust extinction increases. We confirm that the integrated velocity dispersion can be a good indicator of the intrinsic outflow velocity unless dust extinction is not very strong (>~80%), while the effect of dust extinction can be alleviated by combining the integrated velocity and the velocity dispersion. Based on the simulated velocity distributions using the 3-D models, the variety of the observed [O $_{III}$] line profiles of type 2 AGNs can be well reproduced. In addition, we perform Monte Carlo simulations based on the different sets of model parameters. By comparing the model results with the observed [O $_{III}$] kinematics of ~39,000 SDSS type 2 AGNs (Woo et al. 2016), we find that the observed [O $_{III}$] velocity-velocity dispersion distribution is well reproduced by the biconical outflow model, enabling us to constrain the intrinsic physical parameters of outflows.

  • PDF

Formation and evolution of sub-galactic structures around dwarf galaxy-sized halos

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.39.4-40
    • /
    • 2016
  • We aim to investigate formation of satellite sub-galactic structures around isolated dwarf galaxies using cosmological hydrodynamic zoom simulations. For this, we modify a cosmological hydrodynamic code, GADGET-3, in a way that includes gas cooling down to T~10K, gas heating by universal reionization when z < 8.9, UV shielding for high density regions of $n_{shield}$ > $0.014cm^{-3}$, star formation in the dense regions ($n_H$ > $100cm^{-3}$), and supernova feedback. To get good statistics, we perform three different simulations for different target galaxies of the same mass of ${\sim}10^{10}M_{sun}$. Each simulation starts in a cubic box of a side length of 1Mpc/h with 17 million particles from z = 49. The mass of dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus each satellite sub-galactic structure can be resolved with more than hundreds or thousands particles. We analyze total 90 sub-galactic structures that have formed outside of the main halos but infall the main halos. We found that 1) mini halos that interact more with the other mini halos tend to accrete the more mass, 2) mini halos that interact more before the reionization tend to form more stars, 3) mini halos with the more interaction tend to approach closer to the galactic center and have the lower orbital circularity, 4) survivals even in the strong tidal fields evolve baryon dominated system, such as globular clusters.

  • PDF

Multi-aperture Photometry Pipeline for DEEP-South Data

  • Chang, Seo-Won;Byun, Yong-Ik;Kim, Myung-Jin;Moon, Hong-Kyu;Yim, Hong-Suh;Shin, Min-Su;Kang, Young-Woon
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.56.2-56.2
    • /
    • 2016
  • We present a multi-aperture photometry pipeline for DEEP-South (Deep Ecliptic Patrol of the Southern Sky) time-series data, written in C. The pipeline is designed to do robust high-precision photometry and calibration of non-crowded fields with a varying point-spread function, allowing for the wholesale search and characterization of both temporal and spatial variabilities. Our time-series photometry method consists of three parts: (i) extracting all point sources with several pixel/blind parameters, (ii) determining the optimized aperture for each source where we consider whether the measured flux within the aperture is contaminated by unwanted artifacts, and (iii) correcting position-dependent variations in the PSF shape across the mosaic CCD. In order to provide faster access to the resultant catalogs, we also utilize an efficient indexing technique using compressed bitmap indices (FastBit). Lastly, we focus on the development and application of catalog-based searches that aid the identification of high-probable single events from the indexed database. This catalog-based approach is still useful to identify new point-sources or moving objects in non-crowded fields. The performance of the pipeline is being tested on various sets of time-series data available in several archives: DEEP-South asteroid survey and HAT-South/MMT exoplanet survey data sets.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

BOES Survey of FU Orionis-type Objects

  • Lee, Jeong-Eun;Park, Sunkyung;Yoon, Sung-Yong;Lee, Sang-Gak;Kang, Wonseok;Sung, Hyun-Il;Park, Won-Kee;Yoon, Tae Seog;Cho, Dong-Hwan;Park, Keun-Hong
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.60.1-60.1
    • /
    • 2016
  • 태양과 같은 별의 형성기작은 질량이 큰 별의 형성기작에 비해 비교적 잘 연구되어 왔다고는 하지만, 이 또한 온전한 이해와는 거리가 먼 상황이며 여전히 논란의 대상이다. IRAS, Spitzer와 같은 적외선우주망원경으로 얻어진 원시성의 광도함수는 일반적으로 받아들여졌던 별탄생 이론으로 설명되지 못한다는 것이 밝혀졌고, 이에 새로운 별탄생 이론이 필요하게 되었다. 새롭게 받아들여지고 있는 별탄생 모델은 Episodic Accretion 모델로서, 원시행성계원반에서 원시성으로 질량 강착이 간헐적이면서 폭발적으로 일어난다는 것이다. 이러한 모델의 관측적 증거의 하나는 FU Orionis와 같은 천체로서, T-Tauri 단계에 있는 원시성이 본래의 밝기보다 약 100배, 즉 가시광에서 5등급 이상 폭발적으로 밝아진 천체이다. 질량강착의 과정은 행성형성의 초기조건을 결정하는 원시행성계원반의 물리적, 화학적 특성을 결정하므로, 그 이해가 중요하다. 따라서 본 연구팀은 Episodic Accretion이 원시행성계원반과 원시항성풍의 형성과 진화에 어떤 역할을 하는지 연구하기 위하여, 보현산 천문대의 고분산 분광기인 BOES를 이용하여, 최근에 폭발을 일으킨 원시성인 HBC 722와 2MASS J06593158-0405277을 모니터링 관측을 해왔으며, 이전에 알려진 6개의 FU Orionis 형 천체들도 관측하였다. 여기서는 그 결과를 발표하고자 한다.

  • PDF

Development Status of the DOTIFS: a new multi-IFU optical spectrograph for the 3.6m Devasthal Optical Telescope

  • Chung, Haeun;Ramaprakash, A.N.;Omar, Amitesh;Ravindranath, Swara;Chattopadhyay, Sabyasachi;Rajarshi, Chaitanya V.;Khodade, Pravin
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.51.1-51.1
    • /
    • 2014
  • DOTIFS is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for the Cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT). The telescope is constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital (ARIES). Its main scientific objectives are the physics and kinematics of the ionized gas, star formation and H II regions in nearby galaxies. It is a novel instrument in terms of multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs), and 8 spectrographs. Each IFU is comprised of a microlens array and 144 optical fibers, and has $7.4^{\prime\prime}{\times}8.7^{\prime\prime}$ field of view with 144 spaxel elements with a sampling of 0.8" hexagonal aperture. The IFUs can be deployed on the telescope side port over an 8' diameter focal plane by x-y actuators. 8 Identical, all refractive, dedicated fiber spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength range with single exposure. Currently, conceptual and baseline design review had been done, and is in the critical design phase with a review planned for later this year. Some of the components have already arrived. The instrument will see its first light in 2015.

  • PDF

Three-dimensional MHD modeling of a CME propagating through a solar wind

  • An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006).

  • PDF

KASINICS 오프닝 광학계의 부품 가공 및 정렬 (FABRICATION AND ALIGNMENT OF PARTS OF THE KASINICS OFFNER SYSTEM)

  • 목승원;이성호;육인수;박영식;진호;한정열;문봉곤;차상목;김건희;임명신
    • 천문학논총
    • /
    • 제21권2호
    • /
    • pp.43-49
    • /
    • 2006
  • The KASINICS (KASI Near Infrared Camera System) is a ground-based Near-Infrared (NIR) imaging instrument developed by the Korea Astronomy and Space Science Institute (KASI). In this paper, we report the test results of the KASINICS camera optics system which is comprised of a 1-1 Offner relay. We measure that the surface RMS fluctuations of the Offner mirrors are at the level of $10^{-1}-10^{-2}$ of the target wavelengths, showing that the mirrors are sufficiently smooth for NIR observations. The alignment of the Offner optics system has been checked too. Our ray-tracing simulations find that the image quality should not degrade more than the pixel size of the KASINICS ($40{\mu}m$), if a de-centering or a tilt of the Offner mirrors are within 5mm, or $2.5^{\circ}$. Our measurement shows that the de-centering or the tilt of the Offner mirrors are less than 1 mm or $0.5^{\circ}$, assuring that the KASINICS image quality are not affected by the alignment errors. We have also measured that the optics resolution is $20{\mu}m$ and it does not degrade more than 10% over the detector surface area of 14.3 mm ${/times}$ 14.3mm. Overall, we conclude that the KASINICS optics system satisfies the design requirements for NIR imaging observations.