• 제목/요약/키워드: astronomical detector

검색결과 105건 처리시간 0.026초

Development of 1064 nm squeezer for quantum non-demolition measurement in gravitational wave detector

  • 박준규;김창희;이성호;김윤종;성현철;정의정;제순규
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.60.3-60.3
    • /
    • 2021
  • Squeezed vacuum injection을 이용한 중력파 검출기의 관측감도 향상 기술은 중력파 검출기 광신호의 양자 잡음을 제어하여 관측감도를 높이는 기술로 이론적으로는 10dB에 가까운 신호 대 잡음비 향상을 달성할 수 있다. 실험실 환경에서는 이미 10dB 이상의 신호 대 잡음비 향상을 달성했으며 실제 중력파 검출기에서는 GEO600의 6dB의 신호 대 잡음비 향상이 현재까지 가장 높은 수준이다. 한국천문연구원에서는 2019년부터 차세대 중력파 검출기 기술개발로 1064 nm 파장의 squeezer 개발을 추진했으며 현재 parametric down conversion을 이용해 squeezed vacuum을 생성하는 공진기를 제작하여 시험하는 단계에 있다. 이 발표에서는 한국천문연구원의 1064 nm squeezer 개발 연구와 개발 현황에 대해 소개하고자 한다.

  • PDF

WIDEBAND SPECTRAL DISPERSER MADE OF ZnS FOR EXOPLANET CHARACTERIZATION USING SPACE-BORNE TELESCOPES

  • Enya, Keigo;Fujishiro, Naofumi
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.343-345
    • /
    • 2017
  • We present the development of a spectral dispersion device for wideband spectroscopy for which the primary scientific objective is the characterization of transiting exoplanets. The principle of the disperser is simple: a grating is fabricated on the surface of a prism. The direction of the spectral dispersion power of the prism is crossed with the grating. Thus, the prism separates the spectrum into individual orders while the grating produces a spectrum for each order. In this work, ZnS was selected as the material for the cross disperser, which was designed to cover the wavelength region, ${\lambda}=0.6-13{\mu}m$, with a spectral resolving power, $R{\geq}50$. A disperser was fabricated, and an evaluation of its surface was conducted. Two spectrometer designs, one adopting ZnS (${\lambda}=0.6-13{\mu}m$, $R{\geq}300$) and the other adopting CdZnTe (${\lambda}=1-23{\mu}m$, $R{\geq}250$), are presented. The spectrometers, each of which has no moving mechanical parts, consist simply of a disperser, a focusing mirror, and a detector.

Development of Autoguiding system for IGRINS

  • 이혜인;강원석;박수종;권봉용;이성원;천무영;정의정;육인수;김강민;박찬
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.73.2-73.2
    • /
    • 2013
  • An autoguiding system for astronomical observations should be accurate and stable for efficient data taking. IGRINS (Immersion Grating Infrared Spectrograph) is a high resolution near-IR spectrograph which is now developed by Korea Astronomy and Space Science Institute and the University of Texas. We plan to attach this instrument on the 2.7m telescope at the McDonald observatory in 2013. IGRINS consists on three detector modules, i. e., H and K band spectrograph modules and a K band slit camera module. We use the slit camera for autoguiding of the telescope. In this poster, we describe the system architecture of the hardware and software of the autoguiding system, and the algorithm which would effectively find centers of stellar images on or outside of the slit of the infrared array.

  • PDF

EVALUATION OF FAR-INFRARED BIB-TYPE GE DETECTORS FABRICATED WITH THE SURFACE-ACTIVATED WAFER BONDING TECHNOLOGY

  • Hanaoka, Misaki;Kaneda, Hidehiro;Oyabu, Shinki;Hattori, Yasuki;Tanaka, Kotomi;Ukai, Sota;Shichi, Kazuyuki;Wada, Takehiko;Suzuki, Toyoaki;Watanabe, Kentaroh;Nagase, Koichi;Baba, Shunsuke;Kochi, Chihiro
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.351-353
    • /
    • 2017
  • To realize large-format compact array detectors covering a wide far-infrared wavelength range up to 200 µm, we have been developing Blocked-Impurity-Band (BIB) type Ge detectors with the room-temperature surface-activated wafer bonding technology provided by Mitsubishi Heavy Industries. We fabricated various types of $p^+-i$ junction devices which possessed a BIB-type structure, and evaluated their spectral response curves using a Fourier transform spectrometer. From the Hall effect measurement, we also obtained the physical characteristics of the $p^+$ layers which constituted the $p^+-i$ junction devices. The overall result of our measurement shows that the $p^+-i$ junction devices have a promising applicability as a new far-infrared detector to cover a wavelength range of $100-200{\mu}m$.

Optimization and Performance Evaluation for the Science Detector Systems of IGRINS

  • Jeong, Ueejeong;Chun, Moo-Young;Oh, Jae-Sok;Park, Chan;Yu, Young Sam;Oh, Heeyoung;Yuk, In-Soo;Kim, Kang-Min;Ko, Kyeong Yeon;Pavel, Michael;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.91.1-91.1
    • /
    • 2014
  • IGRINS (the Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras, both of which use Teledyne's $2.5{\mu}m$ cutoff $2k{\times}2k$ HgCdTe HAWAII-2RG CMOS science grade detectors. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control these detectors. We performed lab experiments and test observations to optimize and evaluate the detector systems of science cameras. In this presentation, we describe a process to optimize bias voltages and way to reduce pattern noise with reference pixel subtraction schemes. We also present measurements of the following properties under optimized settings of bias voltages at cryogenic temperature (70K): read noise, Fowler noise, dark current, and reference-level stability, full well depth, linearity and conversion gain.

  • PDF

과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계 (PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3)

  • 육인수;진호;이성호;박영식;이대희;남욱원;박장현;한원용;이종웅
    • 천문학논총
    • /
    • 제22권4호
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

The CREAM Experiment in the International Space Station

  • 이직;전진아;이현수;이혜영;임희진;박일흥;;김홍주;박한배;이무현;서은석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.206.1-206.1
    • /
    • 2012
  • The NASA Antarctica balloon experiment CREAM has successfully collected the data of energetic cosmic rays during six flights in past years. It recently observed the unexpected discrete hardening in energy spectra of comic rays. However high-statistics data of energetic cosmic rays are required for the further investigation of the unexpected hardening in comic-ray energy spectra. The International Space Station (ISS) is an ideal platform for the CREAM experiment to investigate the unexpected hardening and explore the fundamental issues like the acceleration mechanism and the origin of energetic cosmic rays because of the high duty cycle of the experiment in the ISS platform. We will present the design of the ISS-CREAM experiment, and the development and fabrication status of the detector components including the 4-layer silicon charge detector which will measure the charge constitution of cosmic rays with unprecedented accuracy.

  • PDF

LABORATORY EXPERIMENTS OF OFF-AXIS MIRROR OPTICS OF ALUMINUM FOR SPACE INFRARED MISSIONS

  • Oseki, Shinji;Oyabu, Shinki;Ishihara, Daisuke;Enya, Keigo;Haze, Kanae;Kotani, Takayuki;Kaneda, Hidehiro;Nishiyama, Miho;Abe, Lyu;Yamamuro, Tomoyasu
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.359-361
    • /
    • 2017
  • We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated aluminum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we confirmed that the surface accuracy of all the mirrors satisfied the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.

Development of the Near Infrared Camera System for Astronomical Application

  • 문봉곤
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF